You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 27 Next »

Team Members

  • Julia Butterfield
  • Patrick Franks

Project Video

Test

Video due and should be uploaded to your page by 6/5.  See previous course pages for example videos.

Videos should be less than 7 minutes.

Background

Recently, powered exoskeletons have been used successfully to reduce the metabolic cost of walking in both healthy (Zhang et al 2017, Quinlivan et al 2017, Ding et al 2018) and clinical populations (Awad et al 2017). The devices work by supplying torques to augment and offload biological joint moments, thereby reducing the necessary muscle force contributions. Several major challenges remain for the field of powered exoskeleton assistance, and simulation could help answer some of these questions.

Firstly , finding the ideal assistance pattern, both timing and magnitude of torques, is incredibly challenging. Some groups hand-tune most device parameters, for example in Awad et al 2017, they choose a control law for all subjects and only vary the timing. Others employ a human-in-the-loop optimization strategy that tests different device control laws in real-time and adjusts the parameters based on the subject’s metabolic response (Zhang et al 2017, Ding et all 2018). For both hand-tuned devices and human-in-the-loop optimization, choosing a good parameter set to vary as well as good starting points for tuning is incredibly difficult. Simulation could be used to test more possibilities than is possible in experimentation and narrow the parameter space. Although a simulation will never exactly match a human’s response, the simulation results could help experimenters determine seed values for experimental human-in-the-loop optimization.

Secondly, although the interactions between assistance at multiple joints has been explored in the context of running (Uchida et al, 2016) and loaded walking (Dembia et al. 2017), very little work has been done in simulation of unconstrained multi-joint assistance during unloaded walking. As researchers seek to further decrease the energy cost of walking beyond that which can be accomplished through assistance at a single joint, the interactions between joints becomes crucial. It may be that the benefit of assistance at multiple joints is less than the sum of its individual components. Assistance at a joint may turn out to be unnecessary, or at least not worth the added weight of another actuator for that joint. Alternatively, perfectly timed assistive moments at multiple joints could have benefits well beyond individual joint assistance. The problem of finding good parameter spaces and initial guesses becomes exponentially more difficult as multiple joints are considered, and simulation again offers a way to explore more possibilities than feasible in experimentation.

The purpose of our project was to explore the simulation of individual joint assistance and multi-joint assistance, with an overall goal of designing the seed values and joint torque profiles for a human-in-the-loop optimization experiments with a bilateral ankle-knee-hip exoskeleton.

Research Question(s)

  1. How can bilateral hip, knee, and ankle assistive torques be optimized to reduce the metabolic cost of walking?
  2. How do the optimal assistive torque profiles at each joint during single joint assistance compare to the optimal assistive torque profiles when all three joints are optimized simultaneously?
  3. (If time allows) How do the control laws found from simulation for bilateral hip-knee-ankle assistive torques perform in physical experimentation?

Methods

We used the OpenSim API in MATLAB, with the basic gait 10dof18 model. Walking kinematics and kinetics were adapted from Nick Bianco's research project (INSERT REFERENCE). Biological joint torques were calculated using inverse dynamics. We used a fixed kinematic approach, so the kinematics were not changing throughout the optimization.

We first solved for muscle activations without any exoskeleton assistance while optimizing to reduce muscle activations squared. We used the muscle redundancy solver framework from De Groote et al. 2016 (https://simtk.org/projects/optcntrlmuscle) which employed GPOPS-II optimal control software. 

Then, we added bi-directional ideal torque actuators at the hip, knee and ankle. We then solved for both muscle activations and torque actuator control while optimizing to reduce muscle activations squared, without penalizing the use of the torque actuators. We limited the maximum amount of torque that the actuators could apply; we ran three simulations with max torques at 60 Nm, 120 Nm, and 200 Nm. We chose 200 Nm because it is the maximum amount of torque that can be applied by a recently designed hip-knee-ankle exoskeleton emulator. 

After each optimization we calculated metabolic cost using a model from Uchida et al. 2016, adapted from Umberger et al. 2010. Metabolic cost was compared across magnitudes of maximum hip-knee-ankle assistance. 

After simulating hip-knee-ankle assistance, we then simulated assistance at each joint individually. The magnitude for the individual actuator was set to 200 Nm. Metabolic cost was again calculated for each simulation, and the results were compared to those from simulation of hip-knee-ankle assistance. 

 

Results

The optimized assistance torques for the hip, knee, and ankle actuators were compared to the biological joint torques estimated from inverse dynamics. It seems that the actuators have similar profiles to the biological torques, either matching the magnitude or less than those seen biologically. 

 

    

Torque profiles vs magnitude of assistance

 

 

Metabolic cost reductions vs magnitude of assistance 

Muscle activation vs magnitude of assistance for hip knee ankle 

 

Single-joint vs multi-joint assistance

Metabolic cost reductions single-joint vs multi-joint

Muscle activations in single joint vs multi-joint assistance

 

Future Work

  • What were some challenges you faced?
  • Did you address all the research questions you aimed to?
  • What future studies could be done to address these challenges?
  • Based on your results, what are the next questions to be studied?
  • How does this advance the field of biomechanics on a larger scale?

To be completed by 6/5.

Acknowledgements

You should acknowledge any help you received on your project. Collaboration is always encouraged but must be acknowledged.

References

Awad, L. N., Bae, J., O’Donnell, K., De Rossi, S. M. M., Hendron, K., Sloot, L. H., … Walsh, C. J. (2017). A soft robotic exosuit improves walking in patients after stroke. Science Translational Medicine9(400). https://doi.org/10.1126/scitranslmed.aai9084

Ding, Y., Kim, M., Kuindersma, S., Walsh, C.J., 2018. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking. Science Robotics 3. doi:10.1126/scirobotics.aar5438

Quinlivan, B. T., Lee, S., Malcolm, P., Rossi, D. M., Grimmer, M., Siviy, C., … Walsh, C. J. (2017). Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit. Science Robotics2(2), eaah4416. https://doi.org/10.1126/scirobotics.aah4416

Uchida, T.K., Seth, A., Pouya, S., Dembia, C.L., Hicks, J.L., Delp, S.L., 2016. Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Running. Plos One 11. doi:10.1371/journal.pone.0163417