
Common Scripting Commands
Scripting environments like Matlab, Python and the OpenSim GUI shell allow users to interact with the classes of the OpenSim API (see Introduction to the

). OpenSim API There are many example scripts that are located in the OpenSim scripting folder, available with the distribution to help you get started. This
page is resources of some of the common calls that you will make in the scripting environment of your choice.

Beginner Scripting Resources
Inline Method and Type getting
Packages and Libraries
Loading, Creating, and Initializing Models
Exploring and Editing Models and Model Components
Parent and Concrete Classes
Outputs
Reading Data from TRC Files into TimeSeriesTable
Using the Tools
Working with Vectors, Matrices, and Other SimTK Classes
Advanced Multibody Calculations with Simbody
Class Templates (Vec3(), Array<double>, Vector())
Obtaining Position and Velocity Information
Using the Simbody Visualizer
Set verbosity or logging level
Batch Processing
References

Beginner Scripting Resources

Run the example scripts found in the distribution.
As you run the example scripts, find the related Classes and Methods in Doxygen
The structure for classes can often be found in OpenSim's files (.xml or .osim). For example, Setup_Scale.xml shows the hierarchy of the
ScaleTool.
Use the to search for a Class or Method in the documentation, on the forum or on the Doxygen pages. OpenSim Search bar
If you are having trouble with a Class or Method, ask a question on the .OpenSim forum

Inline Method and Type getting

These are inline commands that help you find the methods available for a class

Command Platform Description

methodsview('Model') or methodsview
(osimModel)

GUI, Matlab Examine the methods available for a class (e.g. Model) or for an existing object that
you've created (e.g. osimModel)

type(aObject) GUI, Python Prints the full qualified type of aObject

Up/Down Arrows at the command
prompt

GUI, Interactive
Python

Recalls past commands entered at the prompt

Tab completion Matlab, Interactive
Python

Define an OpenSim model or object then use tab completion in Matlab to see the
available methods

dir(aObject) Python Returns a list of methods available on aObject

Packages and Libraries

Packages and libraries are collections of classes and methods (see for background) that have a well-defined interface Introduction to the OpenSim API
and can be imported into your programming environment to utilize. These can be packages to browse files, read and write files, do mathematics
operations, and run simulations. The commands below are common packages or libraries you will find useful.

Package Platform Description

java.swing GUI Swing is the generic GUI kit for Java, allows for I/O and creating windows if needed. Examples of usage can be found .here

java.lang GUI Lang is the Java language core libraries e.g String, Math, etc. To use particular libraries (for example Math), do "from java.
lang import Math"

java.io GUI IO is the package in Java that's used to perform input/output operations including file reading/writing.

org.
opensim.
modeling

GUI and
Matlab

Modeling classes from the OpenSim API. This package is automatically imported in the GUI Shell. In Matlab, excute
command to avoid having to type org.opensim.modeling.'Class'import org.opensim.modeling.*

https://simtk-confluence.stanford.edu:8443/display/OpenSim/Introduction+to+the+OpenSim+API
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Introduction+to+the+OpenSim+API
https://simtk.org/api_docs/opensim/api_docs/
http://opensim.stanford.edu/support/index.html
https://simtk.org/forums/viewforum.php?f=91&sid=c0e8a20a44fe5ca1524b3bb78fe03dcf&sid=26e02750f974c25f796217f05616c06a
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Introduction+to+the+OpenSim+API
http://wiki.python.org/jython/SwingExamples

org.
opensim.
utils

GUI Provides some convenient file browsing options

To import packages in the GUI, type, for example:

>>> import java.io as io # Import Read/Write package
>>> trcFolder = io.File(trcDataFolder) # Use package to read TRC file

Creating New Objects

Creation of objects is performed by the constructor method of the Class. We can create an object and populate its properties, or pass the class a correctly
formatted xml file.
Note: 'path' indicates your system path to the file (i.e., C:/Users/<username>/Documents/OpenSim/4.0/Models/...).

Note: Delete "modeling." from code for Matlab.

Action Class Information Default construction (Scripting
shell)

XML construction (Scripting shell)

Marker set object OpenSim::MarkerSet markerSet = modeling.MarkerSet() markerSet = modeling.MarkerSet(['markerSet.xml'])path

Marker data object OpenSim::MarkerData markerData = modeling.MarkerData() markerData = modeling.MarkerData(['walkingData.path
trc'])

Scaling tool object OpenSim::ScaleTool scaleTool = modeling.ScaleTool() scaleTool = modeling.ScaleTool(['scale_setup.xml'])path

Inverse Dynamics analysis
object

OpenSIm::
InverseDynamicsTool

idTool = modeling.
InverseDynamicsTool()

idTool = modeling.InverseDynamicsTool(['ID_setup.path
xml'])

Control Set OpenSim:ControlSet controlSet = modeling.ControlSet() controlSet = modeling.ControlSet(['controls.mot'])path

Building a MarkerSet Object from file and attaching it to a Model

>>> myModel = modeling.Model("gait2354.osim") # Load a Model from file
>>> markerSetFile = "gait2354_MarkerSet.xml" # Define the full path to the MarkerSet file
>>> newMarkers = modeling.MarkerSet(myModel, markerSetFile) # Construct a MarkerSet Object
>>> myModel.updateMarkerSet(newMarkers) # Append newMarkers to the Model's MarkerSet,
replacing markers with the same name

Building a MarkerSet Object Programmatically and attaching it to a Model

>>> myModel = modeling.Model("gait2354.osim") # Create a Model Object
>>> pelvisbody = myModel.getBodySet().get("pelvis") # Get a handle to the pelvis body
>>> newMarker = modeling.Marker("LASI", pelvisbody, modeling.Vec3(1,1,1)) # Create a Marker called 'LASI'
that is attached to the pelvis at (1,1,1)
>>> myModel.addMarker(newMarker) # Add newMarker to the Model

https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1MarkerSet.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1MarkerData.html#a8f8c23d00721ddd4cd63ecb93e694c96
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1ScaleTool.html#a3b138c851ff97eea6ec487841274830d
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1InverseDynamicsTool.html#a8e3e85f440a8cf7c5462dfd6caac28f5
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1InverseDynamicsTool.html#a8e3e85f440a8cf7c5462dfd6caac28f5
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1ControlSet.html

Building a Body Programmatically in Matlab

>> newBody = Body(); % Creates a body
>> massCenter = Vec3(-0.0707,0.0,0.0); % Create a Vec3 Object with mass center information
>> inertia = Inertia(0.128, 0.0871, 0.0579, 0, 0, 0); % Create an Inertia object with only principal axes
>> newBody.setName('pelvis'); % Set the name of the body
>> newBody.setMass(11); % Set the mass of the body
>> newBody.setMassCenter(massCenter); % Set the mass center
>> newBody.setInertia(inertia); % Set the body's inertia

%% Alternatively, a body can be created by sending all of these properties directly to the constructor
>> massCenter = Vec3(-0.0707,0.0,0.0); % Create a Vec3 Object with Mass center information
>> inertia = Inertia(0.128, 0.0871, 0.0579, 0, 0, 0); % Create an Inertia object with only principal axes
>> bodyName = 'pelvis'; % Set the name of the body
>> bodyMass = 11; % Set the mass of the body
>> newBody = Body(bodyName, bodyMass, massCenter, inertia); % Creates a body from properties sent to
constructor

Create a Joint programmatically in Matlab

>> pBody = Body('pelvis', bodyMass, massCenter, inertia); % Create the parent body
>> cBody = Body('femur_r', bodyMass, massCenter, inertia); % Create the child body
>> name = 'hip_r'; % Joint name
>> locInParent = Vec3(-0.0707,-0.0661,0.0835); % Location of the joint origin expressed in the
parent frame
>> oriInParent = Vec3(0,0,0); % Orientation of the joint frame in the parent
frame
>> locInChild = Vec3(0,0,0); % Location of the joint origin expressed in the
child frame
>> oriInChild = Vec3(0,0,0); % Orientation of the joint frame in the child
frame
>> rHip = BallJoint(name, pBody, locInParent, oriInParent, cBody, locInChild, oriInChild); % Construct the hip
joint

Create a Torque Actuator for the Knee Joint (flex/ext) programmatically in Matlab

>> myModel = Model('gait2354.osim'); % Create a Model Object from file
>> femur_r = myModel.getBodySet().get('femur_r'); % Get a handle to the femur
>> tibia_r = myModel.getBodySet().get('tibia_r'); % Get a handle to the tibia
>> zAxis = Vec3(0,0,1); % A Vec3 of the z-axis
>> torqueActuator = TorqueActuator(); % Create a TorqueActuator Object
>> torqueActuator.setBodyA(femur_r); % Set BodyA
>> torqueActuator.setBodyB(tibia_r); % Set BodyB
>> torqueActuator.setAxis(zAxis); % Set the axis about which the torque will act
>> torqueActuator.setOptimalForce(10); % Set the optimal force (gain) of the actuator

Create a Coordinate Actuator programmatically in Python

>>> myModel = opensim.Model("arm26.osim")
>>> coordActuator = opensim.CoordinateActuator()
>>> coordActuator.setName('r_elbow_actuator')
>>> coordActuator.setCoordinate(myModel.getComponent('r_shoulder/r_shoulder_elev'))

Loading, Creating, and Initializing Models

Loading models and dealing with model states is very common. Below are the methods for loading, copying and initializing a model

Action GUI Command Matlab/Python Command

Loads the specified model in the GUI loadModel(modelFileName)

Creates a handle to the current model in the GUI myModel = getCurrentModel()

Load a model from file (Create Model Object) myModel = modeling.Model(modelFileName) myModel = Model()'gait2354.osim'

Creates a copy of myModel. myModelCopy = modeling.Model(myModel) myModelCopy = Model(myModel)

Initialize the model and get the default state myState = myModel.initSystem() myState = myModel.initSystem()

Loading a Model and States in the GUI Scripting Window

>>> modelFileName = modelFolder+"/gait2354_simbody.osim" # Define the full path to the model file
>>> loadModel(modelFileName) # Load the model into the GUI
>>> myModel = getCurrentModel() # Create a handle to the current model
>>> myState = myModel.initSystem() # Initialize the model and obtain the default state

Exploring and Editing Models and Model Components

You can use the functionality of the OpenSim API to access the properties of a model and change their values. For examples, refer to the distributed
scripts muscleScaler and alterTendonSlackLength. The OpenSim API Doxygen lists all of the available functions. For example, executing the following
commands in the GUI scripting shell, sets and gets the name of the current model.

>>> myModel = getCurrentModel()
>>> myModel.setName("My Model")
>>> mymodel.getName()
>>> "my Model"

The API also allows you to access and edit the components of an OpenSim model, like its bodies, muscles, and joints. Some properties have custom "get"
and "set" functions - see the respective classes for details.

Action Class
Information

Getting a Handle to a Set Reference
an Object by
index

Get object from a
name

Alternative 'long path'

Body Set OpenSim::
BodySet

bodySet= myModel.getBodySet() rightFemur =
bodySet().get(1)

rightFemur = bodySet().
get("femur_r")

rightFemur =myModel.getBodySet().get
("femur_r")

Joint Set OpenSim::
JointSet

jointSet = myModel.getJointSet() rightHip =
jointSet ().get(7)

rightHip = jointSet().get
("hip_r")

rightHip = myModel.getJointSet().get("hip_r")

Coordinat
e Set

OpenSim::
CoordinateSet

cordSet= myModel.getCoordinateSet() hip_coord =
cordSet().get(4)

hip_coord = cordSet().
get("hip_flexion_r")

hip_coord = cordSet().get("hip_flexion_r")

Muscle
Set

Muscles muscleSet= myModel.getMuscles() recFemR =
muscleSet().get
(3)

rec_fem_r = recFemRt().
get("'recFem_r")

rec_fem_r= myModel.getMuscles().get
("'recFem_r")

Path
Point of a
Muscle

OpenSim;
PathPoint

pathPoints = myModel.getMuscles().get
("'recFem_r").getGeometryPath().
getPathPointSet()

recFemPathPoint
1 = pathPoints.
get(0)

recFemPathPoint1 =
pathPoints.get
("rect_fem_r-P1")

recFemPathPoint1 = myModel.getMuscles().
get("'recFem_r").getGeometryPath().
getPathPointSet()

Once a Handle to the component has been created you can edit its properties and methods.

Action Class Information Example

Get the optimal fiber length OpenSim::Muscle::
getOptimalFiberLength	()

recFemFiberLength = RectusFemoris.
getOptimalFiberLength()

Set the optimal fiber length OpenSim::Muscle::setOptimalFiberLength() RectusFemoris.setOptimalFiberLength(0.23)

Set the tendon slack length OpenSim::Muscle::setTendonSlackLength() RectusFemoris.setTendonSlackLength(0.2105)

Get the muscle maximum isometric
force

OpenSim::Muscle::getMaxIsometricForce() recFemMaxForce = RectusFemoris.getMaxIsometricForce()

You should generally avoid adding and removing objects from a model that is "live" in the OpenSim GUI. Instead you should make a copy of the
model, make additions and deletions, then reload in the GUI.

https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1BodySet.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1BodySet.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1JointSet.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1JointSet.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1CoordinateSet.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1CoordinateSet.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1Muscle.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1PathPoint.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1PathPoint.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1Muscle.html#a32327a0a9d82669200a10be843918a75
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1Muscle.html#a32327a0a9d82669200a10be843918a75
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1Muscle.html#a4c131483f481c96cbd08ea1a6d37cb6a
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1Muscle.html#a90d8ba26d30b4828f885517a5e849ea6
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1Muscle.html#ac34dd6b32feadbead43cc46dcfd37886

Change the ECRB muscle properties in the GUI

>>> ECRB = myModel.getMuscles().get("ECRB") # Get a handle to the ECRB
>>> backupTendonSlackLength = ECRB.getTendonSlackLength() # Back up the original tendon slack length (just in
case)
>>> ECRB.setTendonSlackLength(0.2105) # Prescribe a new Tendon slack length
>>> myModel.initSystem() # Re-initialize the model

You may need to downcast an object from an abstract class (e.g., Muscle) to a derived class (e.g., Thelen2003Muscle) in order to gain access to its
properties and methods. Here is an example:

>> import org.opensim.modeling.*
>> myModel = Model('arm26.osim');
>> mcl_TRIlong = Thelen2003Muscle.safeDownCast(myModel.getMuscles().get('TRIlong'));
>> mcl_TRIlong.setFmaxTendonStrain(0.5*mcl_TRIlong.getFmaxTendonStrain());

Parent and Concrete Classes

If you are calling a method or function (e.g., getting or setting properties) that you are pretty sure should work, but you are getting an error that the method
doesn't exist, this may mean that you need to . In the C++ programming language, programmers use a concept called " " to build up downcast inheritance
complexity without re-writing the same code multiple times. For example, in OpenSim Thelen2003Muscle and MillardMuscle both rely on code in the
common parent Muscle class that they "inherit" from.

If you have a handle to a base class object (e.g. Muscle) you may need to downcast the object to one of its derived (or concrete) classes, like the
Thelen2003Muscle, in order to gain access to properties and methods specific to the concrete class. In the below example, we get a reference to a muscle
in the model and return the class name and concrete class name;

>>> model = Model(path2model)
>>> muscle = model.getMuscles().get(0);
>>> muscle.getClassName()
muscle
>>> muscle.getConcreteClassName()
Thelen2003Muscle

Then to get a reference to the concrete class you use the safeDownCast() method.

>>> muscle = model.getMuscles().get(0); # The object you get here is of base class Muscle
>>> thelenMuscle = Thelen2003Muscle.safeDownCast(muscle) # To use a method specific to Thelen2003Muscle you
need to safeDownCast
>>> timeConstant = thelenMuscle.getActivationTimeConstant() # Get property that is present is specific to
Thelen2003Muscle

Outputs

OpenSim 4.0 uses component outputs and reporters to collect variables of interest and print them to file. To display the output names for a component,
use the method getOutputNames();

>>> muscle.getOutputNames();

Reading Data from TRC Files into TimeSeriesTable

To read marker trajectories from a trc file into a TimeSeriesTableVec3, construct a table by passing the filename into the TimeSeriesTableVec3
constructor. Afterwards, you can query the TimeSeriesTable for the data as shown in the code snippet below.

https://en.wikipedia.org/wiki/Downcasting
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

>>> markerData = TimeSeriesTableVec3('markerdata.trc');
>>> numDataRows = markerData.getNumRows();
>>> numMarkersInTable = markerData.getNumColumns();

Using the Tools

Tools contain a number of grouped Methods that allow you to run a study. For example, to scale a Model to match experimental data the ScaleTool groups
GenericModelMaker(), ModelScaler() and MarkerPlacer() together. The AnalyzeTool() can group StaticOptimization() and MuscleAnalysis() together to
output muscle states of a Static Optimization. Tools can be initialized from a setup file (.xml) that has stored settings. They also have methods that
methods can be called to change the input models, data files, and some settings. Use the or methodsview() in Matlab (described API documentation
above) to explore the methods that are available for the Tool you are using.

Command or Class Platform Action

scale = ScaleTool('Scale_Setup_file.
xml')

Matlab Returns a object with properties defined in the Scale_Setup_File.xml Scaletool

ik = InverseKinematicsTool()

ik.run()

Matlab Returns an object with default properties. You must set the properties of InverseKinematicsTool
the tool.

Begin the Inverse Kinematics simulation by calling the run() method.

rra = RRATool'RRA_Setup.xml')

rra.setAdjustCOMToReduceResiduals
(1)

rra.run()

Matlab Returns an object with properties defined in the RRA.RRATool

Allow RRA to alter the trunk COM by using the setAdjustCOMToReduceResiduals() method.

Begin the RRA simulation by calling the run() method.

so = AnalyzeTool('SO_Setup.xml') Matlab Returns an that has a analysis included. AnalzeTool Static Optimization

Working with Vectors, Matrices, and Other SimTK Classes

We've exposed the most commonly used SimTK classes. In particular:

Command Platform Description

modeling.Vec3()

modeling.Vec3(double e)

modeling.Vec3(double e0, double
e1, double e2)

All Creates a Simtk Vec3 object (a vector of length 3). If passed only one argument (double e) all
elements will be set to e.

modeling.Vector(int length,
double e)

All Creates a Simtk Vector with specified length. All elements are set to e.

modeling.Mat33(double e)

modeling.Mat33(double e0, ... ,
double e8)

All Creates a Simtk Mat33 object (a 3x3 matrix). If passed only one argument (double e), the diagonal
elements will be set to e and other elements set to zero.

modeling.Inertia()

See doxygen link at right for
additional constructors

All Creates a object. All constructors are available except symmetric matrix constructors.Simtk Inertia

modeling.State() All Creates a object. See the doxygen link for more information.Simtk State

modeling.Stage()

modeling.Stage(int level)

All Creates a object, optionally realized to level l. See the doxygen link for more information.Simtk Stage

Helpful tips:

For Simbody doxygen links above Vec3P corresponds to a modeling.Vec3 object and RealP corresponds to a double value.
To see the available methods for these objects, use methodsview() or tab completion (Matlab only).

https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1ScaleTool.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1ScaleTool.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1InverseKinematicsTool.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1RRATool.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1AnalyzeTool.html
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1StaticOptimization.html
https://simtk.org/api_docs/simbody/api_docs/Simbody/html/classSimTK_1_1Inertia__.html
https://simtk.org/api_docs/simbody/api_docs/Simbody/html/classSimTK_1_1State.html
https://simtk.org/api_docs/simbody/api_docs/Simbody/html/classSimTK_1_1Stage.html

You can find more information in the section of the User's Guide. Note that only the SimTK classes listed above are available SimTK Basics
through scripting.
You can also find more information in the section below on Handling C++ Templates.

ArrayDouble

In many cases the function you're trying to call takes an argument type different from the object you have already. This is true even moving data between
Matlab and Java objects, and between objects in the SimTK namespace and those in the OpenSim namespace. In particular, many OpenSim methods
return an ArrayDouble (Array<double) and you would prefer to convert the array to a different type. The following set of convenience methods are
"Adaptors" intended to help you pass data around between OpenSim objects and low level SimTK objects.

For Matlab, leave off "modeling". For Python, change "modeling" to "opensim".

Command Platform Description

modeling.ArrayDouble.createVec3([0.0,0.05,0.35]) All Creates a SimTK::Vec3

modeling.ArrayDouble.getAsVec3() All returns SimTK::Vec3 populated from ArrayDouble of size 3.

modeling.ArrayDouble.getAsVector() All return SimTK::Vector populated from ArrayDouble

modeling.ArrayDouble.populateFromVector(SimTK::Vector aVector) All populate an ArrayDouble from the passed in SimTK Vector

modeling.ArrayDouble.getValuesFromVec3(SimTK::Vec3 vec3) All returns an ArrayDouble populated from the passed in SimTK Vec3

Advanced Multibody Calculations with Simbody

In 4.0, you can perform advanced multibody calculations in scripting via the inside the OpenSim Model (model.SimbodyMatterSubsystem
getMatterSubsystem()). The SimbodyMatterSubsystem class allows you to compute the mass matrix, Jacobians, inverse dynamics moments, etc.

Use the Simbody Inverse Dynamics Operator in Matlab

model = Model('arm26.osim');
s = model.initSystem();
% For the given inputs, we will use the inverse dynamics operator
% (calcResidualForce()) to compute the first column
% of the mass matrix. We accomplish this by setting all inputs to 0
% except for the acceleration of the first coordinate.
% f_residual = M udot + f_inertial + f_applied
% = M ~[1, 0, ...] + 0 + 0
model.realizeVelocity(s);
appliedMobilityForces = Vector();
appliedBodyForces = VectorOfSpatialVec();
knownUdot = Vector(s.getNU(), 0.0);
knownUdot.set(0, 1.0);
knownLambda = Vector();
residualMobilityForces = Vector();
smss = model.getMatterSubsystem();
smss.calcResidualForce(s, appliedMobilityForces, appliedBodyForces, ...
 knownUdot, knownLambda, residualMobilityForces);

Class Templates (Vec3(), Array<double>, Vector())

A summary of Templatized Class use in scripting can be found on the page. Scripting Versions of OpenSim C++ API Calls

Templates are advanced C++ constructs that are used extensively throughout the OpenSim API and Simbody API. If you see notation like Array<double>
in the doxygen or C++ code that you are trying to replicate, this means you're working with a templatized class and, to use that class in scripting, will need
to find its appropriate mapping in the scripting environment. For more information, and a easy to use ummary of the C++ to scripting mappings, see the Scri

 page. pting Versions of OpenSim C++ API Calls

Obtaining Position and Velocity Information

For more information regarding multibody system states, refer to the documentation in the Developer's Guide.SimTK Simulation Concepts

In order to obtain simulation position or velocity state information you must have a State object in hand.

When referring to indexed elements remember that Matlab begins indexing at 1 while OpenSim data structures begin at 0.

https://simtk-confluence.stanford.edu:8443/display/OpenSim/SimTK+Basics
https://simbody.github.io/simbody-3.6-doxygen/api/classSimTK_1_1SimbodyMatterSubsystem.html
https://simtk-confluence.stanford.edu:8443/pages/viewpage.action?pageId=34242607
https://simtk-confluence.stanford.edu:8443/pages/viewpage.action?pageId=34242607
https://simtk-confluence.stanford.edu:8443/pages/viewpage.action?pageId=34242607
https://simtk-confluence.stanford.edu:8443/display/OpenSim/SimTK+Simulation+Concepts

Using State Objects

>>> state = myModel.initSystem();
>>> myModel.equilibrateMuscles(state);

Now you can use methods on Body objects (actually, from the Frame class) to obtain the location or velocity of a point in the ground frame.

>>> body = myModel.getBodySet().get('r_ulna_radius_hand')
>>> massCenter = body.getMassCenter(massCenter)
>>> body.getStationVelocityInGround(state, massCenter)
>>> dir(body) # List other methods available on Body.

Using the Simbody Visualizer

You can use the visualizer from Simbody in Matlab and Python. To do so call the "setUseVisualizer" method and pass in the parameter "true", and when
you run the simulation the Simbody Visualizer GUI will pop up. The example of usage is described in "TugOfWar_CompleteRunVisualizer.m"

osimModel = Model('tug_of_war_muscles_controller.osim');
osimModel.setUseVisualizer(true);

Set verbosity or logging level

You can control how much detail is printed to the console using the following:

Logger.setLevel("Off");
Logger.setLevel("Critical");
Logger.setLevel("Error");
Logger.setLevel("Warn");
Logger.setLevel("Info"); % default
Logger.setLevel("Debug");
Logger.setLevel("Trace");

When performing batch processing or optimization you can turn off logging completely by calling Logger.setLevel("Off").

You can always add a new file during runtime to start logging into (in addition to whatever the current logging behavior is). This can be done by calling

Logger.addFileSink('logs_folder/full_path.log');

Make sure you have permission to write to the logs_folder.

Batch Processing

There are several examples in the Matlab scripts and GUI scripts that show how to perform batch processing by calling the OpenSim API (e.g. Analyze,
IK). We encourage you to use this approach rather than using Matlab's xml parsing tools. To read more about why this is the case, please see the scripting
FAQ:

Frequently Asked Questions

References

Java File IO: http://docs.oracle.com/javase/1.4.2/docs/api/java/io/File.html
Using Java in Jython: http://www.jython.org/jythonbook/en/1.0/JythonAndJavaIntegration.html
Jython Swing examples: http://wiki.python.org/jython/SwingExamples

Next: Scripting in the GUI

Applies to OpenSim 4.2 (unreleased) and above.

https://simtk-confluence.stanford.edu:8443/display/OpenSim/Frequently+Asked+Questions#FrequentlyAskedQuestions-Scripting
http://docs.oracle.com/javase/1.4.2/docs/api/java/io/File.html
http://www.jython.org/jythonbook/en/1.0/JythonAndJavaIntegration.html
http://wiki.python.org/jython/SwingExamples
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Scripting+in+the+GUI

Previous: Scripting

Home: Scripting and Development

https://simtk-confluence.stanford.edu:8443/display/OpenSim/Scripting
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Scripting+and+Development

	Common Scripting Commands

