How Static Optimization Works

As described in Inverse Dynamics, the motion of the model is completely defined by the generalized positions, velocities, and accelerations. The Static Optimization Tool uses the known motion of the model to solve the equations of motion for the unknown generalized forces (e.g., joint torques) subject to one of the following muscle activation-to-force conditions:

ideal force generators:

\[\text{Error rendering 'mathblock' macro: (show error message).} \]

or, constrained by force-length-velocity properties:

\[\text{Error rendering 'mathblock' macro: (show error message).} \]

while minimizing the objective function:

\[\text{Error rendering 'mathblock' macro: (show error message).} \]

where \(n \) is the number of muscles in the model; \(a_m \) is the activation level of muscle \(m \) at a discrete time step;

\[\text{Error rendering 'mathinline' macro: (show error message).} \]

is its maximum isometric force; \(l_m \) is its length; \(v_m \) is its shortening velocity;

\[\text{Error rendering 'mathinline' macro: (show error message).} \]

is its force-length-velocity surface; \(r_{m,j} \) is its moment arm about the \(j \) joint axis;

\[\text{Error rendering 'mathinline' macro: (show error message).} \]

is the generalized force acting about the \(j \) joint axis; and \(\rho \) is a user defined constant. Note that for static optimization

\[\text{Error rendering 'mathinline' macro: (show error message).} \]

computes the active fiber force along the tendon assuming an inextensible tendon and does not include contribution from muscles’ parallel elastic element.

Next: How to Use the Static Optimization Tool
Previous: Getting Started with Static Optimization
Home: Static Optimization