

OpenSim Workshop

Equations of motion

$$[M]\ddot{q} = G(q) + V(q,\dot{q}) + S(q,\dot{q}) + [R]f$$

M: Mass matrix

- **Q:** Generalized coordinates
- G: Gravity
- V: Coriolis and centrifugal effects
- S: Generalized force due to contact elements
- F: Generalized force (muscle force)
- R: Force transformation matrix (moment arms)

PERTURBATION	INDUCED ACCELERATION	
Perturb muscle force (1N) and st	tudy effect on COM acceleration	
Forward integration over 0.03s		
Computationally expensive (<u>days</u>)		
Sensitive to contact stiffness Sensitive to time interval		
OpenSim 2.4		
Liu, 2006		

• Stiff 3D linear and torsional springs approximate a weld constraint

PERTURBATION	INDUCED ACCELERATION	
Perturb muscle force (1N) and study effect on COM acceleration		
Forward integration over 0.03s	Instantaneous effect	
Computationally expensive (<u>days</u>)	Computationally efficient (<u>minutes</u>)	
Sensitive to contact stiffness Sensitive to time interval		
OpenSim 2.4	OpenSim 3.0 onwards	
Liu, 2006		
 Replaces the with an approximatic concernment of the second sec	e contribution of contact opriate kinematic constraint. onstraint reaction forces are ultaneously with the constrained	

equations of motion

• Kinematic constraints

Point - no translations	Weld - no translations	Roll - non-penetrating
(Allows relative rotation)	- no rotations	- fore-aft no-slip - med/lat no-slip
	$\rho_x(q) - \rho_{x,o} = 0$	- vertical no-twist
	$\rho_y(q) = 0$	$\rho_y(q) = 0$
$\rho_x(q) - \rho_{x,o} = 0$	$\rho_z(q) - \rho_{z,o} = 0$	$\dot{\rho}_x(q,\dot{q}) = 0$ Pure rolling
$\rho_y(q) = 0$	$\theta_x(q) - \theta_{x,o} = 0$	$\dot{\rho}_z(q,\dot{q}) = 0$
$\rho_z(q) - \rho_{z,o} = 0$	$\theta_{y}(q) - \theta_{y,o} = 0$	$\omega_{y}(q,\dot{q})=0$
	$\theta_z(q) - \theta_{z,o} = 0$	
	4	

- Muscle Potentials: accounts for a theoreticcal force increase (1N).
- Muscle IAA: accounts for the instantaneous muscle force(xN)

• Verify superposition

Contribution to com acceleration (Liu, 2006)

- How to use IAA:
 - Requires Muscle force distribution (e.g. SO)
 - Does not work in case of missing contact forces (e.g. unilateral forces during double stance)

۲	Analyze Tool	×
Main Settings	Actuators and External Loads Analyses	
Current Mod	lel	
Name sub	ject01	
_Input		_
 Control 	s C:\OpenSim 3.3\bin\subject01_walk1_controls.xml	
 States 	C:\OpenSim 3.3\bin\subject01_walk1_states.sto	
O Motion	From file	
	◯ Loaded motion ∨	
	Filter coordinates Hz	
Solve for equilibrium for actuator states		
Time range	to process 0.83 to 1.19	
- Analysis Set		
Active ana	lyses InducedAccelerations Edit	
Output	· · · · · · · · · · · · · · · · · · ·	
Prefix	subject02_running_arms	
Directory	C:\OpenSim 3.3\bin\ResultsInducedAccelerations	2
Precision	8	
	Load Save Run Close Help	

C Analyze Tool	x
Main Settings Actuators and External Loads Analyses	
Actuators Additional force set files penSim 3.3\bin\gait2354_CMC_Actuators.xml Edit Append to model's force set Replace model's force set	
External Loads	
Load Save Run Close Help	

0		Property Editor
Name	Value	Description
InducedAccelerations	Induced	
• on	✓	Flag (true or false) specifying whether whether on. True by default.
start_time	0.83	Start time.
• end_time	1.19	End time.
••• step_interval	20	Specifies how often to store results during a simulation. More specifically, the interval (a positive integer) specifies how many successful integration steps should be taken before results are recorded again.
in_degrees	~	Flag (true or false) indicating whether the results are in degrees or not.
coordinate_names	+0	Names of the coordinates for which to compute induced accelerations. The key word 'All' indicates that the analysis should be performed for all coordinates.
🚊 🦺 body_names	+ (center	Names of the bodies for which to compute induced accelerations. The key word 'All' indicates that the analysis should be performed for all bodies. Use 'center_of_mass' to indicate the induced accelerations of the system center of mass.
• • [0]	× center	
🖃 🎍 ConstraintSet		
🖃 🍌 objects	+ (Array	
RollingOnSurfaceConstraint	right_fo	
···· 🔶 isDisabled	~	Flag indicating whether the constraint is disabled or not. Disabled means that the constraint is not active in subsequent dynamics realization
···· + rolling_body	calcn_r	Specify the rolling body for this constraint.
••• • surface_body	ground	Specify the body containing the surface (plane) that the rolling body rolls on.
+ surface_normal	010	Surface normal direction in the surface body.
surface_height	0.0	Surface height in the direction of the normal in the surface body.
friction_coefficient	0.65	Coulomb friction coefficient for rolling on the surface.
contact_radius	0.01	A guess at the area of contact approximated by a circle of radius.
RollingOnSurfaceConstraint	left_foo	
isDisabled	~	Flag indicating whether the constraint is disabled or not. Disabled means that the constraint is not active in subsequent dynamics realization
rolling_body	calcn_l	Specify the rolling body for this constraint.
surface_body	ground	Specify the body containing the surface (plane) that the rolling body rolls on.
surface_normal	010	Surface normal carection in the surface body.
surface_neight	0.0	Surface neight in the direction of the normal in the surface body.
Triction_coefficient	0.65	Courons inclon coefficient for rolling on the surface.
contact_radius	0.01	A guess at the area or contact approximated by a circle or radius.
the force threshold		The minimum energy of sub-second form 0.0 shot is a superscript to be contracted with a superscript 1
<pre>iorce_urreshold</pre>	2.0	The minimum anount of external note (v) that is necessary to be replaced with a constant.
compute_potentials_only	H	Only compute the potential (acceleration) for cert of an actuation to accelerate the model.
report_constraint_reactions		report interiodation to consent in reaction in accelerations.
		OK Cancel