

Simulation Analysis: Estimating Joint Loads

OpenSim Workshop

Investigating a Simulation:

The Analyze Tool:

Example: Quantifying Joint Loads

Design Biomedical Devices

Argenson et al, J. Biomech 2005

Predict Tissue Stress

Besier et al, MED. SCI. SP & EXERCISE, 2006

Study degradation

USC2000, 2009, http://www.flickr.com/photos/usc2000/3189533413/

Joint Reaction Analysis

Joint reaction forces and moments

- satisfy joint constraints
- represent internal loads carried by the joint structure
- result from all loads acting on the model

Prevent movements that cannot be produced

Available from the Analyze Tool

Esternal Loads

Estimate

<u>Calculate</u>

Muscle Forces

Joint Reaction Forces and Moments

Static Optimization

<u>Input</u>

Model

Joint Kinematics

External Loads

<u>Output</u>

Muscle Forces

Muscle Activations

Complete dynamic description

Joint Reaction analysis calculates joint loads in a post processing step.

This step traverses all joints in the musculoskeletal model.

Joint Reaction analysis calculates joint loads in a post processing step.

This step traverses all joints in the musculoskeletal model.

Joint Reaction analysis calculates joint loads in a post processing step.

This step traverses all joints in the musculoskeletal model.

Calculation of the joint reaction forces on S_i

Joint Reaction Analysis: Setting It Up

Inputs from Static Optimization

Model Kinematics External Loads data Residual Actuators

Inputs specific to JointReaction

Muscle force data Joints of interest Bodies of interest Coordinate reference frames

<u>Output</u>

*_JointReaction_ReactionLoads.sto

