

Forward Dynamics

Why Use Forward Dynamics Simulations?

1. <u>Validation</u>: do forces estimated from inverse dynamics reproduce the observed motion?

2. <u>Understanding</u>: how do muscle forces generate motion – what are the "cause and effect" relationships?

3. <u>Prediction</u>: "what if" a muscle or joint is altered, how will performance change?

Key Concepts

- Musculoskeletal model dynamics
- States of a musculoskeletal model
- Controls of a musculoskeletal simulation
- Numerical integration of dynamical equations

Overview of Forward Dynamics

Forward

Science

Musculoskeletal Model Dynamics

States of a Musculoskeletal Model

- States are model variables that are governed by the dynamics
- All measures of interest can be calculated from the states

Controls of a Musculoskeletal Model

Numerical Integration of Dynamical Equations

Controls

muscle excitations, x(t)

Initial States

joint coordinates, q joint velocities, \dot{q} muscle activation, a fiber length, l

Model dynamical equations:

$$\ddot{q} = \left[\mathbf{M}(q)\right]^{-1} \left\{ \mathbf{\tau}_{m}(a, l, \dot{l}) - \mathbf{C}(q, \dot{q}) + \mathbf{G}(q) + F \right\}$$

$$\dot{a} = \mathbf{A}(a, x)$$

$$\dot{l} = \mathbf{\Lambda}(a, l, q)$$

Numerical Integrate from Initial States

Forward Dynamic Simulation

2. The musculoskeletal model for this tutorial (leg39) has how many states?

A. 3

B. 9

C. 12

D. 24

3. Given the model below with two identical muscles and their levels of excitation plotted versus time, which way will the block initially move if starting

- A. To the left
- B. Does not move

- B. To the right
- D. Upward

- 4. Given initial q and \dot{q} and muscle a and l, how are these states determined at a small instant ahead in time?
 - A. Specify controls and compu \dot{a},l I,ar \ddot{q} q from model dynamics
 - B. Numerically integrate forces and controls from model differential equations
 - C. Numerically integra \dot{a},\dot{l} ar \ddot{q} q
 - D. Numerically differentiate forces and controls from the dynamical equations
 - E. A & C

- 1. A forward dynamics simulation is
 - A. a musculoskeletal model
 - B. muscle-driven
 - C. a simulation that uses feedback
 - D. the integration of dynamical equations