

Inverse Dynamics

OpenSim Workshop

Key Concepts

- Kinematics: coordinates and their velocities and accelerations
- Kinetics: forces and torques
- Dynamics: equations of motion

Kinematics: Coordinates and their Velocities and Accelerations

Coordinate

 Joint angle or distance specifying relative orientation or location of two body segments

Coordinate velocity

 Derivative (rate of change) of a coordinate with respect to time

Coordinate acceleration

 Time derivative of a coordinate velocity with respect to time

Kinematics

Set of all coordinates and their velocities and accelerations

Kinetics: Forces and Torques

Kinetics

Forces and torques cause the model to accelerate

Force

 Applied to points (e.g., ground reactions) or between points (e.g., muscles)

Torque

Applied to a coordinate (e.g., joint torque)

Dynamics: Equations of Motion

ID: Summary

Generalized (joint) forces

- NET JOINT FORCES
- NET JOINT MOMENTS

$$\underbrace{\boldsymbol{\mathcal{T}}}_{\text{unknowns}} = \underbrace{\boldsymbol{M}(\boldsymbol{q}) \ddot{\boldsymbol{q}} - \boldsymbol{C}(\boldsymbol{q}, \dot{\boldsymbol{q}}) - \boldsymbol{G}(\boldsymbol{q}) - \boldsymbol{F}}_{\text{knowns}}$$

ID

Exercise

For the model shown on the right, what is the value (θ) of the knee coordinate (Note: extension is +)?

A. 23.6°

B. -54.9°

C. 31.3°

D. -125.1°

Exercise

2. Given that the **model** shown on the right is **at rest**, what is the **velocity** of the knee?

A. 23.6° /s
B. -54.9° /s
C. 3.89° /s
D. 0° /s

Exercise

3. For the **model poses** shown below **at rest** and with **gravity** (**g**) as the **only force** acting on the model, **which pose** requires the **largest torque** at the **knee** joint?

The inverse problem

Going from subject motion to joint kinematics [Inverse Kinematics]

Dealing with noisy data

Kinematics

- Identify research question for the inverse problem
- Determine what should be measured and modeled
- Compute joint kinematics
- Filter and differentiate joint kinematics data

Differentiation Amplifies High-Frequency Noise

Kinematics

- ✓ Identified research question for the inverse problem
- ✓ Determined what should be measured and modeled
- ✓ Computed joint kinematics
- ✓ Filtered and differentiated joint kinematics data

Inverse Dynamics

Inverse Kinematics

- Derive equations of motion defining the model
- Solve equations of motion for joint moments

A Possible Inverse Dynamics Question

What are the sagittal plane moments about the ankle, knee, and hip during a maximum height jump?

Experimental set-up

Inverse Dynamics Input: The Experimental Results

Experiments provide

- joint angles
- angular velocities
- ground reaction forces

Inverse Dynamics Equations: Multibody Dynamics

- Planar 3 degrees of freedom
- Position (orientation) in global coordinate system
- Segment length = l_i
- Distance to mass center = r_i
- Moments of inertia about mass center
- Foot has no mass and remains on ground

Inverse Dynamics Equations: Multibody Dynamics

Solved algebraically from the ground up

$$x, \dot{x}, \ddot{x}$$
 $\Sigma F_x = m\ddot{x}$

$$y, \dot{y}, \ddot{y} \Longrightarrow \Sigma F_y = m\ddot{y}$$

$$\theta, \dot{\theta}, \ddot{\theta}$$
 $\Sigma T = I\ddot{\theta}$

Joint Moments that generate the motion

Inverse Dynamics Output: Net Joint Moments

Inverse Dynamics

TIPS & TRICKS

Filter your raw coordinate data

Make sure GRFs were applied correctly and check residuals on the body connected to ground

Compare to previous literature data (if available)