

Inverse Dynamics

OpenSim Workshop

Key Concepts

- Kinematics: coordinates and their velocities and accelerations
- Kinetics: forces and torques
- Dynamics: equations of motion

Kinematics: Coordinates and

their Velocities and Accelerations

- Coordinate
- Joint angle or distance specifying relative orientation or location of two body segments
- Coordinate velocity
- Derivative (rate of change) of a coordinate with respect to time
- Coordinate acceleration
- Time derivative of a coordinate velocity with respect to time
- Kinematics
- Set of all coordinates and their velocities and accelerations

Kinetics: Forces and Torques

- Kinetics
- Forces and torques cause the model to accelerate
- Force
- Applied to points (e.g., ground reactions) or between points (e.g., muscles)
- Torque
- Applied to a coordinate (e.g., joint torque)

Dynamics: Equations of Motion

ID: Summary

Exercise

1. For the model shown on the right, what is the value ($\boldsymbol{\theta}$) of the knee coordinate (Note: extension is +)?
```
A. 23.6
B. }-54.\mp@subsup{9}{}{\circ
C. 31.3
D. -125.1 
```


Exercise

2. Given that the model shown on the right is at rest, what is the velocity of the knee?
A. $23.6^{\circ} / \mathrm{s}$
B. $-54.9^{\circ} / \mathrm{s}$
C. $3.89^{\circ} / \mathrm{s}$
D. $0^{\circ} / \mathrm{s}$

Exercise

3. For the model poses shown below at rest and with gravity (g) as the only force acting on the model, which pose requires the largest torque at the knee joint ?
A.

The Inverse Problem

The Inverse Problem

The Inverse Problem

The Inverse Problem

Video Cameras
Reflective Markers

The Inverse Problem

Differentiation Amplifies High-Frequency Noise

1 Hz signal 10 Hz noise

The Inverse Problem

Identified research question
Inverse for the inverse problem
\checkmark Determined what should be measured and modeled
\checkmark Computed joint kinematics
\checkmark Filtered and differentiated joint kinematics data

A Possible Inverse Dynamics Question

Experimental set-up
What are the sagittal plane moments about the ankle, knee, and hip during a maximum height jump?

Inverse Dynamics Input: The Experimental Results

Experiments provide

- joint angles
- angular velocities
- ground reaction forces

Inverse Dynamics Equations: Multibody Dynamics

- Planar 3 degrees of freedom
- Position (orientation) in global coordinate system
- Segment length $=l_{i}$
- Distance to mass center $=r_{i}$
- Moments of inertia about mass center
- Foot has no mass and remains on ground

Inverse Dynamics Equations: Multibody

Dynamics

Solved algebraically from the ground up

Segment i

Segment i-1

$$
\begin{array}{lr}
x, \dot{x}, \ddot{x} & \Sigma F_{x}=m \ddot{x} \\
y, \dot{y}, \ddot{y} \Rightarrow \Sigma F_{y}=m \ddot{y} \\
\theta, \dot{\theta}, \ddot{\theta} & \Sigma T=I \ddot{\theta}
\end{array}
$$

Joint Moments that generate the motion

Inverse Dynamics Output: Net Joint Moments

The Inverse Problem

Inverse Dynamics

Associated motion: subject02__unning__RRA_states to model: RRA_adjusted

TIPS \& TRICKS

Filter your raw coordinate data
Make sure GRFs were applied correctly and check residuals on the body connected to ground

Compare to previous literature data (if available)

