
OpenSim

 Developer’s Guide
 Release 2.4

April 4, 2012
 Website: http://opensim.stanford.edu

1. Developer's Guide . 2
1.1 Getting Started as a Developer . 3

1.1.1 Technical Background . 4
1.1.2 Prerequisites . 6
1.1.3 Step-by-Step Example . 9

1.2 Performing a Simulation . 11
1.2.1 Performing a Simulation Part One . 12
1.2.2 Performing a Simulation Part Two . 16
1.2.3 Performing a Simulation Part Three . 18
1.2.4 Performing a Simulation Part Four . 21

1.3 Creating Your Own Analysis . 24
1.3.1 Creating Your Own Analysis Part One . 25
1.3.2 Creating Your Own Analysis Part Two . 28

1.4 Adding New Functionality . 32
1.4.1 Creating a Controller . 33

1.4.1.1 Creating a Controller Part One . 34
1.4.1.2 Creating a Controller Part Two . 38

1.4.2 Creating an Optimization . 41
1.4.3 Creating a Customized Actuator . 47

1.4.3.1 Creating an Actuator Part One . 49
1.4.3.2 Creating an Actuator Part Two . 53

1.4.4 Creating a Customized Muscle Model . 56
1.4.4.1 Custom Muscle Model Part One . 57
1.4.4.2 Custom Muscle Model Part Two . 61

1.5 SimTK Basics . 65
1.5.1 Numbers and Constants in SimTK . 66
1.5.2 Vectors and Matrices . 67
1.5.3 Basic Geometry and Mechanics . 70
1.5.4 Available SimTk Numerical Methods . 73
1.5.5 Multibody Dynamics Concepts (Simbody) . 74
1.5.6 SimTK Simulation Concepts . 75

2. Authors . 79
3. Acknowledgements . 80
4. Trademarks and Copyright . 81

2

1.

2.
3.
4.
5.

Developer's Guide

Guide Overview

OpenSim enables users to create computer models of the musculoskeletal system and create dynamic simulations of movement. Individuals who
read this guide will learn advanced programming features of OpenSim through illustrations and exercises. Completing the exercises will enable
you to create simulations, analyze simulations, and add new functionality to the software.

This guide summarizes the tools and capabilities of OpenSim available to the C++ programmer. It includes five sections:

Getting Started as a Developer describes some basic technical background, the prerequisites to build and run the examples in the
chapters to follow, and a step-by-step example
Performing a Simulation illustrates how to write a main program that performs a dynamic simulation
Creating Your Own Analysis demonstrates how to write a plug-in to analyze a simulation
Adding New Functionality describes how to add functionality to OpenSim
SimTK Basics provides some background on SimTK

For more information on OpenSim, visit the OpenSim project site at . The project site provides a forum for users tohttp://simtk.org/home/opensim
ask questions and share expertise, as well as many other resources.

Looking for a PDF? You can also download the Developer's Guide as a PDF (updated 4/4/2012). Please note that the most up-to-date material
can be found online.

Audience

This guide is recommended for those who desire in-depth knowledge of musculoskeletal modeling and simulation with OpenSim and wish to use
the Application Programming Interface (API) to create or contribute novel models or algorithms not currently supported by the OpenSim
application. Programming experience in C++ will help you complete the exercises.

Next: Getting Started as a Developer

http://simtk.org/home/opensim

3

Getting Started as a Developer
This section describes some basic technical background, the prerequisites to build and run the examples in the chapters to follow, and a
step-by-step example:

Technical Background
Prerequisites
Step-by-Step Example

Next: Technical Background

4

Technical Background

The topics covered in this section include:

What is an API?
Some C++ Basics
Structure of the OpenSim API

What is an API?

An () is a particular set of rules ('code') and specifications that software programs can follow toapplication programming interface API
communicate with each other. It serves as an interface between different software programs and facilitates their interaction, similar to the way the
graphical user interface (GUI) facilitates interaction between humans and computers. Using the OpenSim API, other programs such as any C++
programming software or Matlab can access the OpenSim source code. In this way, OpenSim developers can make use of existing OpenSim
code, to build on it and extend the available capabilities. For example, the API can be useful for creating Main programs to build and run models,
or for creating new analyses, actuators (e.g. an altered muscle model), or controllers.

Some C++ Basics

OpenSim is written in C+ + is a general-purpose programming language. It is regarded as an intermediate-level language, as it comprises a. C
combination of both high-level language features (more abstract and conceptual) and low-level language features (directly interfacing with
hardware).

If you are not familiar with C+ ++ programming language before starting the examples. A good free, online, +it is advisable to learn some basic C
course is available on Only very limited C++ basics are described here.http://www.cplusplus.com/doc/tutorial/

C++ code, in contrast to for example Matlab code, needs to be or , before it can be run. A is a computer program (or setcompiled built compiler
of programs) that transforms source code written in the programming language (the source language) into another computer language (the target
language, often having a binary form known as object code). Visual Studio is an example of a compiler. The most common reason for wanting to
transform source code is to create an executable program.

An (.exe) file is a program that causes a computer to perform indicated tasks according to encoded instructions (as opposed to a dataexecutable
file that must be parsed by a program to be meaningful). These instructions are typically machine code instructions for a physical CPU. Thus,
when a C++ program is compiled, the user-readable programming language is transformed to computer-readable instructions.

OpenSim is a collection of executables and dynamically linked libraries (.dll). A is a collection of functions, constants, classes (seeC++ library
below) that are executable or callable at runt-time and supply the full range functionality to the application (like OpenSim). Libraries enable the
same implementation for a given functionality (like reading data from a file) to be supplied to any application that links to it and is therefore more
generally useful.

One of the main features of C++ is that it facilitates . Rather than writing code in a potentially long sequence ofobject-oriented programming
executable lines, object-oriented programming allows the programmer to design applications from a point of view of communication between
things, known as objects. The code consists of many , which all belong to certain . These classes interact with each other. Thisobjects classes
allows a greater reusability of code in a more logical and productive way.

Structure of the OpenSim API

OpenSim is written using object-oriented programming. It consists of a large set of classes. For example, each muscle in an OpenSim model is an
object (an instantiation) of a certain muscle model class, eg 'Thelen2003Muscle', which is a member (child) of its parent class
'ActivationFiberLengthMuscle, which in turn is a member of the more general class 'Muscle', which in turn is a member of the more general class
'Actuator', etc.

You can view all classes and their hierarchical structure available in OpenSim using . This is an automatically generated overview of alldoxygen
available code. You can access doxygen either through your OpenSim installation directory, in the folder: C:/OpenSim2.3.2/sdk/doc/index.html. If
you click on index.html, you will see an overview of the OpenSim hierarchy. As an example, you could click on ModelComponent, which will give
you a list of model components, all members of the general class ModelComponent. If you then click on Force, you will get a list of available force
generators, etc.

The OpenSim API is built in turn on top of the Simbios "simulation toolkit" . More details about SimTK code can be found in .SimTK SimTK Basics

Using C++, you can interface with OpenSim's libraries and extend or add to them. This could mean that you can build your own class that
OpenSim can use, eg. a new muscle model, which could be a child of the more general class 'Muscle'. This means all the attributes of Muscle
are inherited by your new class and therefore you only need to specify the new or different functionality that defines the behavior of your muscle
class. It could also mean that you build a standalone (Main) program that uses existing OpenSim classes, for example to run a simulation, as
shown in Chapter 2.

You can also convert your new program to a , a software component that adds specific abilities to the general OpenSim software. Yourplug-in
plug-in will be a separate dynamically linked library (.dll on Windows), which you will be able to load into the GUI or into your main program or
have it be used by different tools. An example of a plug-in is given in where an Analysis plug-in is made, and used fromAdding New Functionality
within the GUI.

http://www.cplusplus.com/doc/tutorial/

5

Next: Prerequisites

Home: | Getting Started as a Developer Developer's Guide

6

1.
2.
3.

Prerequisites

The topics covered in this section include:

Overview
CMake
Visual Studio
OpenSim
Obtaining the Example Programs

Overview

The requirements and examples in this guide are targeted for users running Windows or Mac OSX with Windows BootCamp or VMWare since the
OpenSim application and libraries are built for Windows. (Note, for those that are familiar with CMake and the compilers for their operating
system, it is possible to build the OpenSim libraries from source, but that is currently beyond the scope of this guide.) To run the examples
provided in the developer's guide, you will need:

CMake 2.6 or later () http://www.cmake.org/cmake/resources/software.html
Microsoft's Visual Studio (version 2005) or Visual C++ 2010 Express Edition () http://www.microsoft.com/express/vc/Default.aspx
The latest version of OpenSim installed

Each of these programs is described below in more detail.

We also recommend the following tools:

An XML Editor for editing model and setup files, for example:
notepad++ ()http://notepad-plus.sourceforge.net/uk/site.htm
XMLMarker ()http://symbolclick.com/download.htm

CMake

CMake is a cross-platform open-source build system that will setup the build environment in a compiler-independent manner. Simple configuration
files placed in each source directory (called CMakeLists.txt files) are used to generate standard build files (e.g., makefiles on Unix and
projects/solution in Windows MSVC) which are then loaded into a compiler such as Visual Studio, for further programming and compilation. In the
OpenSim API examples, you will use CMake to generate the correct build "solution" files for Visual Studio.

You will need CMake 2.6.0 or later. The latest CMake version is freely available from:
http://www.cmake.org/cmake/resources/software.html

Visual Studio

Visual Studio Express (VS) is a free Windows compiler that program developers at any level can use to create custom applications using basic
and expert settings for the Windows operating system. In the OpenSim API examples, VS is used to view, edit and add new C++ code, and
compile the resulting program to an executable or plug-in.
Install Visual C++ 2010 Express Edition freely available from , if you do not already have VS 2005 orhttp://www.microsoft.com/express/download/
VS 2010 setup on your computer.

OpenSim

1. Due to incompatibility between various versions of Microsoft Visual Studio, you need to download/install the distribution of OpenSim that is
consistent with your development environment: either Visual Studio 2005 (Professional) or 2010 Express (2010 Express is free and
recommended). To install OpenSim, which uses the OpenSim API, download the self-extracting executable from the download page of OpenSim
(go to and click on "Downloads"). The API is accessible with installation of the OpenSim application. Remember tohttp://simtk.org/home/opensim
make a note of where you installed OpenSim, which will be referred to as <OpenSimInstallDir>, which by default is "C:\OpenSim2.x".

2. Run the executable, following the on-line instructions.

To be able to run the main programs from the command line (outside Visual Studio), you need to add the OpenSim libraries to your PATH. This
can be done during installation by selecting the radio button as illustrated below.

http://www.cmake.org/cmake/resources/software.html
http://www.microsoft.com/express/vc/Default.aspx
http://notepad-plus.sourceforge.net/uk/site.htm
http://symbolclick.com/download.htm
http://www.cmake.org/cmake/resources/software.html
http://www.microsoft.com/express/download/%20
http://simtk.org/home/opensim

7

Warning: Earlier installations of OpenSim will continue to be accessible but only through the GUI, which sets its own environment (PATH)
variable.

3. Make sure your contains only your <OpenSimInstallDir>\bin (e.g., "C:\OpenSim 2.x\bin"). You can check this by going tosystem PATH
Start->configuration screen->system->advanced system settings->environmental variables->system variables->Path. If the correct OpenSim\bin
path is not included, then add this to your PATH. Also, make sure that no other OpenSim "\bin" directory is in your PATH. If you've ever built
OpenSim from source code, make sure no directory containing .lib or .dll files for OpenSim are present in your PATH either. If you don't do this,
OpenSim may get confused and possibly use .dll and .lib files from other/older versions of OpenSim instead of the files from the current version of
OpenSim and you will likely experience run-time errors.

4. Test your installation. Go to the <OpenSimInstallDir> directory for the OpenSim installation (e.g., \bin C:
). Copy the file to the <OpenSimInstallDir> and then double-click on it toOpenSim 2.x\bin testOpenSimAPI.exe \sdk\APIExamples\ExampleMain

run the test. If the OpenSim libraries were added to the PATH while installing then you can just browse for the folder above then type
 at the command prompt. If everything was installed correctly, a window should pop up with message like that shown below:testOpenSimAPI.exe

Obtaining the Example Programs

The examples using the OpenSim API come with the OpenSim distribution and are located in the <OpenSimInstallDir>\sdk\APIExamples
directory of your OpenSim installation.

8

Next: Step-by-Step Example

Previous: Technical Background

Home: | Getting Started as a Developer Developer's Guide

9

Step-by-Step Example

In this first example, you will go step-by-step through the entire process of setting up your build folder using CMake, opening and viewing the C++
code in Visual Studio, compiling your first executable, running it and viewing the results in OpenSim. The topics covered in this section include:

Prepare your Development Folder
Running CMake
Running Visual Studio

Prepare your Development Folder

Copy the <OpenSimInstallDir>/sdk/APIExamples/ExampleMain directory into a folder (work space) outside of the OpenSim installation so that
future uninstalls and installs of OpenSim do not destroy your work. Any empty folder will do, for example, C:/OpenSimWorkspace/ would be easy
to recognize. This will be referred to as <WorkSpace> below.

Running CMake

1) Go to Start -> CMake (cmake-gui)

2) For the field "Where is the source code": Browse to the correct folder where you stored your code such as <WorkSpace>/ExampleMain.

3) For the field "Where to build the binaries": Copy-paste the same folder into this field, but add a build folder. Eg.
<WorkSpace>/ExampleMain/build
(It's ok if you use all backslashes instead of all forward slashes)

4) Click Configure.

5) If the "build" directory doesn't exist yet, a message box will pop up asking
if you want to create this directory. Click Yes.

6) Another dialog box will open up entitled "cmake-gui" - in the drop-down menu, select the version of Visual Studio you will use to compile the
ExampleMain project, e.g. Visual Studio 10. Leave "Use default native compilers" selected in the option menu below the drop-down box. Click
Finish.

7) One pink field will show up called OPENSIM_INSTALL_DIR. Click to the right
of where it says C:/OpenSim2.x and make sure this is your <OpenSimInstallDir>.

8) Click Configure. The message window at the bottom of the CMake window
should say "Configuring done"

9) Click Generate. The message window should now display:
Configuring done
Generating done

10

10) Close CMake.

Running Visual Studio

1) In Windows Explorer, navigate to the build directory you just created using CMake, eg.
<WorkSpace>/ExampleMain/build

2) Double-click on the solution file (.sln) that was just created, OpenSimTugOfWar.sln, which will launch Visual C++ with ExampleMain as a
project.

3) Change the Solution Configuration from Debug (default) to Release. You can also choose RelWithDebInf (Release with debug info), which will
allow you to debug your code.

4) Open the TugOfWar_Complete.cpp file, by browsing the libraries in your Solution Explorer on the left. Read through the .cpp file and see if you
can understand, with help of the comments, what it does.

5) Compile the .cpp file(s): right-click on ALL_BUILD and choose Build from the drop-down menu. In the bottom Output window you can see
whether or not your file compiled correctly.

6) Run the program you just created, using one of two methods:

In windows explorer, navigate to the build directory and then to the Release directory. Open the executable that you just created:
StartUpExample.exe
Run the program from VS, by clicking the green arrow button. If you used RelWithDebInfo you can pause the program at any line you
want by adding a breakpoint. This you can do by clicking anywhere in the left grey column.

Next: Performing a Simulation

Previous: Prerequisites

Home: | Getting Started as a Developer Developer's Guide

11

Performing a Simulation

Overview

In this chapter, we will write a main program to perform a forward dynamic simulation using the OpenSim API. We will build it up in pieces, starting
from the simplest possible OpenSim model, a single block experiencing the force of gravity. In the end, we will have an OpenSim model with two
muscles performing a tug-of-war on the block, with the muscles and ground reactions counteracting the gravitational force. The resulting source
code and associated files for this example come with the OpenSim distribution under the directory:

<OpenSimInstallDir>\sdk\APIExamples\ExampleMain

Performing a forward dynamic simulation in OpenSim involves a series of steps. Each of these steps usually requires only a few lines of code.
The following sections explain the steps by gradually developing a complete program, stopping at points where the partial program can be
compiled, run, and its results visualized.

For your convenience, we have provided the source code as a series of exercise-labeled development snapshots, gradually leading up to the
complete program which is called TugOfWar_Complete.cpp. After most steps, we will be using the OpenSim GUI to visualize the model and the
motions that result from running the simulations. See the OpenSim User's Guide for details on using the OpenSim GUI. Each of the steps below
generates output files with the same names:

Performing a Simulation Part One
Performing a Simulation Part Two
Performing a Simulation Part Three
Performing a Simulation Part Four

Next: Performing a Simulation Part One

12

1.

2.
3.

4.

Performing a Simulation Part One

The steps in part one are:

Create an OpenSim Model
Get the Model's Ground Body
Save the Model to a File
Create a New Block Body
Create a Joint between the Ground and the Block
Add the Block Body to the Model
Define Gravity

Create an OpenSim Model

To perform a simulation, we first create an OpenSim model and set its name in our main program.

#include <OpenSim/OpenSim.h>
using namespace OpenSim;

int main()
{
 try {
 // Create an OpenSim model and set its name
 Model osimModel;
 osimModel.setName("tugOfWar");
 }
 catch (OpenSim::Exception ex) {
 std::cout << ex.getMessage() << std::endl;
 return 1;
}

std::cout << "OpenSim example completed successfully.\n";
return 0;
}

Exercise 1: This version of the example is available as . While the main program above compiles and runs, theTugOfWar1_CreateModel.cpp
OpenSim model it creates is "empty" and no information is saved to a file.

Note that you only need to include the header file <OpenSim/OpenSim.h> at the top of the file. Also, note the line:

using namespace OpenSim;

This line is required to avoid having to prefix every symbol with OpenSim:: since all OpenSim classes live in the namespace OpenSim. Another
namespace that will appear later in this guide is SimTK which is utilized by OpenSim for many fundamental classes. Please see Chapter 5 for
details.

You should now compile and run the program:

Run CMake to generate a Visual Studio solution file. If you installed OpenSim in a location different from the default then you need to
change the value of the CMake variable OPENSIM_INSTALL_DIR to point to the actual installation directory. This can be done either in
the CMake interface (after you "Configure" and before you "Generate") or alternatively it could be done directly in the CMakeLists.txt file.
Launch Visual Studio and load in the solution file that CMake just created.
Within Visual Studio, set the Configuration to "RelWithDebInfo" (that is "release with debug information" – unfortunately it won't work in
Debug).
Compile and run the program. If it is working, it should output "OpenSim example completed successfully." and do nothing else. If it
doesn't work, be sure to resolve the problem before attempting to move any further through the exercise.

Get the Model's Ground Body

A new OpenSim model comes with a ground body. This ground body, however, has no geometry attached to it. After we have created an
OpenSim model, we get a reference to the model's ground body. We can then add display geometry to it so we can visualize it in the OpenSim
GUI:

13

// Get a reference to the model's ground body
OpenSim::Body& ground = osimModel.getGroundBody();

// Add display geometry to the ground to visualize in the GUI
ground.addDisplayGeometry("ground.vtp");
ground.addDisplayGeometry("anchor1.vtp");
ground.addDisplayGeometry("anchor2.vtp");

OpenSim allows for files of type , and as display geometry. At this point we still haven't saved any information to a file, so the model.vtp .stl .obj
cannot be opened or visualized within the OpenSim GUI. We'll fix that next.

Save the Model to a File

After we have created a ground body and added its display geometry, we save the model to a file with the ".osim" extension in order to visualize
the model we have created.

// Save the model to a file
osimModel.print("tugOfWar_model.osim");

Exercise 2: After we compile and run the TugOfWar2_AddGround.cpp main program, we can open the model file in thetugOfWar_model.osim
OpenSim GUI and visualize the ground body ().highlighted with green for this guide

Figure: Model with only visible ground geometry.

Except for the colors, you should see an image in the GUI like the one above.

Create a New Block Body

To add an additional body to the OpenSim model, we create a new block body with inertial properties and add display geometry to it.

using namespace SimTK;

// Specify properties of a 20 kg, 0.1 m^3 block body
double blockMass = 20.0, blockSideLength = 0.1;
Vec3 blockMassCenter(0);
Inertia blockInertia = blockMass*Inertia::brick(blockSideLength, blockSideLength, blockSideLength);

// Create a new block body with specified properties
OpenSim::Body *block = new OpenSim::Body("block", blockMass, blockMassCenter, blockInertia);

// Add display geometry to the block to visualize in the GUI
block->addDisplayGeometry("block.vtp");

The classes Vec3 and Inertia live in the namespace SimTK and are explained in Chapter 5. You can write them as SimTK::Vec3 and
SimTK::Inertia or include a "using namespace" statement as we did above.

Also, note that the units for mass and length are kilograms and meters, respectively. OpenSim uses the SI convention (length in meters; mass in
kilograms; time in seconds; forces in Newtons; and moments/torques are in Newton-meters). Angles can be in degrees or radians; internally,

14

OpenSim uses radians.

Programming Note: OpenSim model objects in this example are allocated on the heap using "new". Whenever they are added
to the model, the model takes ownership of these objects, you shouldn't call "delete" on these objects otherwise the model will
be left holding to stale pointers, these objects will be destructed by the model destructor.

At this point, the block body is not connected to the OpenSim model and cannot be used or visualized in the GUI. To achieve that, the block body
has to be connected to the ground body (or any other body already in the model) with a joint. We'll do that next.

Create a Joint between the Ground and the Block

Before we add the block body to the OpenSim model, we create a new free joint (i.e., 6 degrees-of-freedom) between the block and ground.

// Create a new free joint with 6 degrees-of-freedom (coordinates) between the block and ground
bodies
Vec3 locationInParent(0, blockSideLength/2, 0), orientationInParent(0), locationInBody(0),
orientationInBody(0);
FreeJoint *blockToGround = new FreeJoint("blockToGround", ground, locationInParent,
orientationInParent, *block, locationInBody, orientationInBody);

// Get a reference to the coordinate set (6 degrees-of-freedom) between the block and ground bodies
CoordinateSet& jointCoordinateSet = blockToGround->getCoordinateSet();

// Set the angle and position ranges for the coordinate set (SimTK:: prefix not actually needed
here)
double angleRange[2] = {-SimTK::Pi/2, SimTK::Pi/2};
double positionRange[2] = {-1, 1};

jointCoordinateSet[0].setRange(angleRange);
jointCoordinateSet[1].setRange(angleRange);
jointCoordinateSet[2].setRange(angleRange);
jointCoordinateSet[3].setRange(positionRange);
jointCoordinateSet[4].setRange(positionRange);
jointCoordinateSet[5].setRange(positionRange);

At this point, the block body and corresponding free joint are ready to be added to the OpenSim model.

Although we defined a FreeJoint in this example, different kinds of joints are available, with corresponding constructors:

WeldJoint
PinJoint
SliderJoint
BallJoint
EllipsoidJoint
CustomJoint: This is a more general joint that enables joint motion about/along six spatial axes to be specified as user-supplied functions
of joint coordinates.
Joint: an abstract definition that is sub-classed to create new types of joints (e.g., EllipsoidJoint)

Add the Block Body to the Model

To finish this step, we simply add the block body to the OpenSim model.

// Add the block body to the model
osimModel.addBody(block);

Exercise 3: After we compile and run the current main program, we can open the model in the OpenSim GUI (same file name
 as in the earlier step) and visualize the ground body () and the block body (tugOfWar_model.osim highlighted with green for this guide highlighted
). You'll also be able to open the "coordinate viewer" within the GUI and interactively change the coordinates. For thewith blue for this guide

FreeJoint, the built-in names of the coordinates are "X-rotation", "Y-rotation", "Z-rotation" followed by the three translations "X-translation",
"Y-translation", and "Z-translation". These names, however, can be changed by calling the coordinate's setName() method directly.

15

Figure: Model of a moving free block between two fixed anchors.

Except for the colors, the model in the GUI should look like the image above. Be sure to go to the "coordinates" pane, move the sliders
corresponding to the six coordinates, and note the effect that has on the block's position and orientation.

Define Gravity

In order for the block to actually fall during the simulation, we define the acceleration of gravity to pull the block towards the ground. The actual
direction of the vector is arbitrary; however, OpenSim uses the convention that gravity is in the negative Y-direction in the models included with
the OpenSim distribution.

// Define the acceleration of gravity
osimModel.setGravity(Vec3(0,-9.80665,0));

Next: Performing a Simulation Part Two

Home: | Performing a Simulation Developer's Guide

16

Performing a Simulation Part Two

The steps covered in part two are:

Initialize the OpenSim Model System and Get the State
Define Initial Position and Velocity States of the Block
Create the Integrator and Manager for the Simulation
Integrate the System Equations of Motion
Save the Simulation Results

Initialize the OpenSim Model System and Get the State

An OpenSim model is backed by a SimTK::System (see Chapter 5), which actually performs the computations. As such, the model itself is a
stateless object with the state being stored externally in an instance of SimTK::State. To begin simulating the block falling, we initialize the
SimTK::System associated with the OpenSim model and create an instance of the system state. After the call to initSystem(), no changes

 For example, adding forces or constraints would require the re-creation of the system and ashould be made to the structure of the model.
fresh call to initSystem() since these objects may have a state of their own that needs to be incorporated into the system's state.

// Initialize the system
SimTK::State& si = osimModel.initSystem();

Define Initial Position and Velocity States of the Block

Next, we define the initial position and velocity of the block. For the free joint, the position coordinates and their velocities are ordered 0
(x-rotation), 1 (y-rotation), 2 (z-rotation), 3 (x-translation), 4 (y-translation), and 5 (z-translation).

// Define non-zero (defaults are 0) states for the free joint
CoordinateSet& modelCoordinateSet = osimModel.updCoordinateSet();

// set x-translation value
modelCoordinateSet[3].setValue(si, blockSideLength);

// set x-speed value
modelCoordinateSet[3].setSpeedValue(si, 0.1)

// set y-translation value
modelCoordinateSet[4].setValue(si, blockSideLength/2+0.01);

Create the Integrator and Manager for the Simulation

We create the integrator and manager for the simulation in order to perform the numerical integration of the system equations of motion during the
forward dynamics simulation. An OpenSim Manager object collects together all the resources need to perform a simulation, including the Model,
the numerical methods to be employed, the current State, storage for the trajectory, and runtime options for controlling the simulation.

// Create the integrator and manager for the simulation.
SimTK::RungeKuttaMersonIntegrator integrator(osimModel.getMultibodySystem());
integrator.setAccuracy(1.0e-4);
Manager manager(osimModel, integrator);

Integrate the System Equations of Motion

We integrate the system equations of motion from the initial time to the final time of the simulation. Depending on your computer speed, this
numerical integration could take from a few to several seconds.

17

// Define the initial and final simulation times
double initialTime = 0.0;
double finalTime = 4.0;
// Integrate from initial time to final time
manager.setInitialTime(initialTime);
manager.setFinalTime(finalTime);
std::cout<<"\n\nIntegrating from "<<initialTime<<" to " <<finalTime<<std::endl;
manager.integrate(si);

Save the Simulation Results

After we have performed the integration for the forward dynamics simulation, we save the resulting motion in order to visualize the simulation we
have created. Note that OpenSim uses radians internally but degrees are required in a .mot file, so we have to convert to degrees before writing
out the .mot file for visualization.

// Save the simulation results
Storage statesDegrees(manager.getStateStorage());
statesDegrees.print("tugOfWar_states.sto");
osimModel.updSimbodyEngine().convertRadiansToDegrees(statesDegrees);
statesDegrees.setWriteSIMMHeader(true);
statesDegrees.print("tugOfWar_states_degrees.mot");

Exercise 4: After we compile and run the current main program, we can load the model and the motion in the OpenSim GUI and visualize the
simulation. (To load the motion, go to File Load Motion. Select the motion file that we just wrote out.)tugOfWar_states_degrees.mot

Figure: Block is falling in the presence of gravity.

Except for the colors, you should see the above in the GUI. Using the motion slider and video controls, visualize the motion. You should see the
block falling under gravity.

Next: Performing a Simulation Part Three

Previous: Performing a Simulation Part One

Home: | Performing a Simulation Developer's Guide

18

Performing a Simulation Part Three

The steps covered in part three are:

Add Two Opposing Muscles
Prescribe Muscle Controls from Functions
Define the Initial Activation and Fiber Length States
Add Contact Geometry and Elastic Foundation Force

Add Two Opposing Muscles

To prevent the block from falling through the ground, we create two opposing muscles between the ground and block. Note that this must be done
before the call to initSystem, or else the muscles are not included in the simulation.

// Create two new muscles with the these parameters
double maxIsometricForce = 1000.0, optimalFiberLength = 0.1, tendonSlackLength = 0.2,
pennationAngle = 0.0,
activation = 0.0001, deactivation = 1.0;

// Create new muscle 1 using the Shutte 1993 muscle model
// Note: activation/deactivation parameters are set differently between the models.
Thelen2003Muscle *muscle1 = new
Thelen2003Muscle("muscle1", maxIsometricForce,
optimalFiberLength, tendonSlackLength, pennationAngle);
muscle1->setActivationTimeConstant(activation);
muscle1->setDeactivationTimeConstant(deactivation);

// Create new muscle 2 using the Thelen 2003 muscle model
Thelen2003Muscle *muscle2 = new
Thelen2003Muscle("muscle2", maxIsometricForce,
optimalFiberLength, tendonSlackLength, pennationAngle);
muscle2->setActivationTimeConstant(activation);
muscle2->setDeactivationTimeConstant(deactivation);

// Specify the paths for the two muscles
// Path for muscle 1
muscle1->addNewPathPoint("muscle1-point1", ground, Vec3(0.0,0.05,-0.35));
muscle1->addNewPathPoint("muscle1-point2", *block, Vec3(0.0,0.0,-0.05));

// Path for muscle 2
muscle2->addNewPathPoint("muscle2-point1", ground, Vec3(0.0,0.05,0.35));
muscle2->addNewPathPoint("muscle2-point2", *block, Vec3(0.0,0.0,0.05));

// Add the two muscles (as forces) to the model
osimModel.addForce(muscle1);
osimModel.addForce(muscle2);

Prescribe Muscle Controls from Functions

We define the control values for each muscle as a linear function of time defined by the slope of the line and its intercept (value when time=0). We
define two linear function one for each muscle in the tug-of-war.

19

// Create a prescribed controller that simply applies controls as function of time
PrescribedController *muscleController = new PrescribedController();
muscleController->setActuators(osimModel.updActuators());

// Define linear functions for the control values for the two muscles
Array<double> slopeAndIntercept1(0.0, 2); // array of 2 doubles
Array<double> slopeAndIntercept2(0.0, 2);

// muscle1 control has slope of -1 starting 1 at t = 0
slopeAndIntercept1[0] = -1.0/(finalTime-initialTime); slopeAndIntercept1[1] = 1.0;

// muscle2 control has slope of 1 starting 0.05 at t = 0
slopeAndIntercept2[0] = 1.0/(finalTime-initialTime); slopeAndIntercept2[1] = 0.05;

// Set the indiviudal muscle control functions for the prescribed muscle controller
muscleController->prescribeControlForActuator("muscle1", new LinearFunction(slopeAndIntercept1));
muscleController->prescribeControlForActuator("muscle2", new
LinearFunction(slopeAndIntercept2));

Define the Initial Activation and Fiber Length States

In addition, we define the initial activation and fiber length of each muscle. Once these parameters are set, we initialize the states for each
muscle.

// Define the initial states for the two muscles
// Initial activation correspond to control at time=0
muscle1->setDefaultActivation(slopeAndIntercept1[1]);
muscle2->setDefaultActivation(slopeAndIntercept2[1]);

// Fiber length
muscle2->setDefaultFiberLength(0.1);
muscle1->setDefaultFiberLength(0.1);

// Compute initial conditions for muscles
osimModel.computeEquilibriumForAuxiliaryStates(si);

Exercise 5: After we compile and run the current main program, we can load the motion in the OpenSim GUI (same file name
 as before) and visualize the simulation. tugOfWar_states_degrees.mot

Figure: Simulation of a falling block suspended by muscles

Except for the colors, you should see something like the above in the GUI. Using the motion slider and video controls, visualize the motion. You
should see the block falling under gravity but then restrained by the muscles. Then, you should see the block respond to the controls.

Add Contact Geometry and Elastic Foundation Force

As you have seen, geometry does not cause contact forces. To prevent the block from penetrating the floor, we create some display contact
geometry and an elastic foundation force between the floor and a cube.

20

// Create new contact geometry for the floor and a cube
// Create new floor contact halfspace
ContactHalfSpace *floor = new ContactHalfSpace(SimTK::Vec3(0), SimTK::Vec3(0, 0, -0.5*SimTK::Pi),
ground);
floor->setName("floor");

// Create new cube contact mesh
OpenSim::ContactMesh *cube = new OpenSim::ContactMesh("blockRemesh192.obj", SimTK::Vec3(0),
SimTK::Vec3(0), *block);
cube->setName("cube");

// Add contact geometry to the model
osimModel.addContactGeometry(floor);
osimModel.addContactGeometry(cube);

// Create a new elastic foundation force between the floor and cube.
OpenSim::ElasticFoundationForce *contactForce = new OpenSim::ElasticFoundationForce();
OpenSim::ElasticFoundationForce::ContactParameters contactParams;
contactParams.updGeometry().append("cube");
contactParams.updGeometry().append("floor");
contactParams.setStiffness(1.0e8);
contactParams.setDissipation(0.01);
contactParams.setDynamicFriction(0.25);
contactForce->updContactParametersSet(). append(contactParams);
contactForce->setName("contactForce");

// Add the new elastic foundation force to the model
osimModel.addForce(contactForce);

Exercise 6: The complete program up to this point can be found in the file . You can use CMake to generate a newTugOfWar6_AddContact.cpp
solution file with this as the TARGET, or manually replace the previous source file with this one, from within Visual Studio. Make sure the file

 is in your working directory.blockRemesh192.obj

After we compile and run the current main program, we can load the motion in the OpenSim GUI (same file name tugOfWar_states_degrees.mot
as before) and visualize the simulation.

Figure: Muscle actuated block gliding on a contact surface

Except for the colors, you should see something like the above in the GUI. Using the motion slider and video controls, visualize the motion. You
should see that the block no longer falls through the floor but settles there and then responds to the controls.

Next: Performing a Simulation Part Four

Previous: Performing a Simulation Part Two

Home: | Performing a Simulation Developer's Guide

21

Performing a Simulation Part Four

The steps covered in part four are:

Add a Prescribed Force
Adding a Built-in Analysis
Add a Constraint

Add a Prescribed Force

To push the block during the tug-of-war, we create a prescribed force to apply to the block. The prescribed force is applied in the x-direction in the
block body's frame. The point of application varies linearly from (0, 0, 0) to (0.1, 0, 0) during the simulation.

// Specify properties of a force function to be applied to the block
double time[2] = {0, finalTime}; // time nodes for linear function
double fXofT[2] = {0, -blockMass*9.80665*3.0}; // force values at t1 and t2
double pXofT[2] = {0, 0.1}; // point in x values at t1 and t2

// Create a new linear functions for the force and point components
PiecewiseLinearFunction *forceX = new PiecewiseLinearFunction(2, time, fXofT);
PiecewiseLinearFunction *pointX = new PiecewiseLinearFunction(2, time, pXofT);

// Create a new prescribed force applied to the block
PrescribedForce *prescribedForce = new PrescribedForce(block);
prescribedForce->setName("prescribedForce");

// Set the force and point functions for the new prescribed force
prescribedForce->setForceFunctions(forceX, new Constant(0.0), new Constant(0.0));
prescribedForce->setPointFunctions(pointX, new Constant(0.0), new Constant(0.0));

// Add the new prescribed force to the model
osimModel.addForce(prescribedForce);

Exercise 7: After we compile and run the current main program, we can load the motion in the OpenSim GUI (same file name
 as before) and visualize the simulation.tugOfWar_states_degrees.mot

Figure: Muscle-actuated block with additional perpendicular prescribed force

Except for the colors, you should see something like the above in the GUI. Using the motion slider and video controls, visualize the motion. You
should see that the block now responds to the prescribed force as well as the muscle controls.

Adding a Built-in Analysis

Generally, we would like to report various quantities while running a simulation. In this example, we'd like to report the forces that were applied to
the model while running the forward simulation, so that we can troubleshoot the simulation and validate it. To get this effect, we will add in one of
the built-in analyses that come with OpenSim. The specific Analysis subclass we will use in this case is ForceReporter. Attaching this analysis to
the simulation will cause the values of the forces applied to the model to be reported in a storage file at the end of the simulation.
OpenSim provides a set of Analysis subclasses for convenience, in particular:

Kinematics
PointKinematics
Actuation
ForceReporter
InverseDynamics
StaticOptimization

22

The last two analyses are more advanced and are used by the corresponding tools in the GUI. To create the analysis for this step requires adding
the following lines of code before we integrate the model forward:

ForceReporter* reporter = new ForceReporter(&osimModel);
osimModel.addAnalysis(reporter);

After the integration is done, we add the line:

reporter->getForceStorage().print("tugOfWar_forces.mot");

This will create a file with columns corresponding to the forces in the muscles and the applied prescribed forces.

Add a Constraint

In this section, our goal is to create a constraint such that the motion of the block is along a specified line. The line we specify will be represented
by the vector , which will constrain the motion of the block on a 45º angle between the two anchor points.(1, 0, -1)

// Specify properties of a point on a line constraint to limit the block's motion
Vec3 lineDirection(1,0,-1);
Vec3 pointOnLine(1,0,-1);
Vec3 pointOnFollowerBody(0,-0.05,0);

// Create a new point on a line constraint
PointOnLineConstraint *lineConstraint = new PointOnLineConstraint(ground, lineDirection,
pointOnLine, *block, pointOnFollowerBody);

// Add the new point on a line constraint to the model
osimModel.addConstraint(lineConstraint);

Exercise 8: This is the final step of this example. The complete program can be found in the file . You can use CMakeTugOfWar_Complete.cpp
to generate a new solution file with this as the TARGET, or manually replace the previous source file with this one, from within Visual Studio.

23

Figure: Final simulation.

After we re-compile and run the current main program, we can load the new motion file in the OpenSim GUI (same file name
 as before) and visualize the simulation. If you look at the animation from a top view as above, you should see thattugOfWar_states_degrees.mot

the motion of the block is now restricted to traveling along a diagonal line.

Next: Creating Your Own Analysis

Previous: Performing a Simulation Part Three

Home: | Performing a Simulation Developer's Guide

24

Creating Your Own Analysis
In the previous chapter, we created a main program that built a new OpenSim model and performed a forward simulation on it. Another way to
utilize the OpenSim API is to use it to create new kinds of objects that are not available in OpenSim.

One particularly common example of such objects is an Analysis. In OpenSim, an Analysis object defines a computation that gets performed
repeatedly either during integration of the equations of motion in a forward simulation or during analysis of a trajectory. While OpenSim comes
with a set of Analysis objects, users often wish to perform new kinds of computations to support their work/research needs. Instead of trying to
anticipate all possible uses, OpenSim allows users to write their own Analysis and attach it to a simulation or to other tools in OpenSim that
process trajectories.
When creating an Analysis, you'll have to decide which of two different ways to implement it:

Dynamic Library Option (Option A): In this scenario, your class implementing the OpenSim::Analysis interface will be built into a
separate dynamic link library (.dll on Windows). Then, you will be able to load this dynamic library into the GUI or into your main
program or have it be used by different tools. This approach allows you to share or distribute your Analysis more easily and to reuse it
in your work without recompiling it. The disadvantage is having to define the class that includes properties that permit serialization
to/from XML files.

Main Program Option (Option B): In this scenario, you compile your Analysis along with your main program for immediate use. The
advantage of this is that you can, optionally, do away with implementing the parts of the Analysis API specific to serialization, so it is
faster to write and test. The disadvantage is that you cannot use it in the GUI or embed it in XML files, which are the setup files for most
of the OpenSim tools. Also, you will have to manually point your build system to the Analysis code you are using, rather than link to or
load a library that you build once.

Your use case will dictate which approach to take for the long term. In some cases, you may start out using option B, do some testing, and then
migrate to option A for the long term.
The OpenSim distribution includes a directory (if you installed to the default location, the full path is templates C:\Program Files\OpenSim

) showing the use of option A, as it is the more general use case and is more involved, as well. The distribution also contains2.0\sdk\templates
the same code built as a plug-in (by default, this is available in). In the example below, weC:\Program Files\OpenSim 2.0\sdk\examples\plugin
will use the plug-in to build our Analysis:

Creating Your Own Analysis Part One
Creating Your Own Analysis Part Two

Next: Creating Your Own Analysis Part One

25

1.
2.
3.

4.

Creating Your Own Analysis Part One

The steps included in part one are:

Build a Body Position Analysis from the Template
Using your Analysis

Build a Body Position Analysis from the Template

In this example, you will learn how to a build and use an Analysis. The Analysis itself is a simple one that outputs the position of the center of
mass of each body in the model.

Prepare a working directory: Copy the folder containing the Analysis template from the installation folder (by default, this is C:\Program
) to a working folder. In this example, we will assume the working folder is Files\OpenSim 2.0\sdk\examples\plugin

, but the name and path are arbitrary.C:\OpenSimPlugin\plugin
Rename Template. In your working plug-in directory (e.g.,), rename the and C:\OpenSimPlugin\plugin AnalysisPlugin_Template.h

 files to and , respectively. (Any other name that is unique from the built-inAnalysisPlugin_Template.cpp MyAnalysis.h MyAnalysis.cpp
analyses will also be acceptable.) The template analysis simply reports the center-of-mass position of selected bodies.
Run CMake.Launch CMake. In the dialog box that appears:

For the field "Where is the source code," select the working plug-in directory you just created (e.g.,).C:\OpenSimPlugin\plugin
Select a directory for "Where to build the binaries." For this example, we will use the folder .C:\OpenSimPlugin\pluginBuild
Populate the "Cache Values" as shown below. Make sure that the correct installation directory is specified for
OPENSIM_INSTALL_DIR, and update it if needed. If you use any directory other than the default for installation, you will also
need to update CMAKE_INSTALL_PREFIX to have the same value as OPENSIM_INSTALL_DIR. The PLUGIN_NAME is the
name of the dll that will be created by the solution file (in this case myAnalysisPlugin).
Click and then .Configure OK

Open the solution file OsimPlugin.sln (located in whatever directory you instructed CMake to build the binaries). This will launch
. Do a search and replace (on the entire solution) to replace with or whatever nameVisual Studio AnalysisPlugin_Template MyAnalysis

you gave your analysis in Step 2.

Build solution. Use Visual Studio's "Build" menu to compile your analysis into a dll (plugin). You need to switch from "Debug" to either
"Release" or "RelWithDebInfo" if you do not have debuggable OpenSim libraries against which to link.

After building the dll, build the Install project within Visual Studio. It should install the dll in .<OpenSimInstallDir>\plugins

Using your Analysis

Option A: The section above demonstrated Option A, creating an analysis that can be built into a dynamic link library. In this case, the dynamic

26

library was created. Below, we examine three of the ways this library can be used:myAnalysisPlugin.dll

With the OpenSim GUI: To use your analysis within the OpenSim GUI, place the dynamic library in the myAnalysisPlugin.dll plugins
folder under the OpenSim installation directory. This enables the GUI to load the Analysis, making it accessible to models and available
through the GUI menu option (Tools->User Plugins). You can also accomplish this by executing the Install project within Visual Studio.
With other OpenSim tools: To use your Analysis with other OpenSim tools, you need to:

Change the setup file for the tool to include your Analysis in the set of Analyses to be executed. You would use the following
XML tags for your new analysis, replacing MyAnalysis with whatever name you actually selected for your class:

<MyAnalysis name="">
 <start_time> 0.0 </start_time>
 <end_time> 1.0 </end_time>
 <in_degrees> true </in_degrees>

 <!--Names of the bodies on which to perform the analysis.The key word 'All' indicates that the
analysis should be performed for all bodies.-->
 <body_names> all </body_names>
</MyAnalysis>

Run the OpenSim tool from the command line, including the option

–L myAnalysisPlugin.dll

replacing the name with the name you gave to the dynamic library.myAnalysisPlugin.dll

For example, to test your Analysis during an InverseDynamics run of the arm26 model you would do the following:

Create a new empty test directory (e.g,).OpenSimPlugin\test

Copy the files , , and from the installation folder (under arm26.osim arm26_InverseKinematics.mot arm26_Setup_InverseDynamics.xml
) to the test folder. (Note: if you use a model from an older version of OpenSim, you may see a lot ofexamples\Arm26\InverseDynamics

"illegal tag" messages. You can clean up the model by reading it into the OpenSim GUI and then saving it.)

Run InverseDynamics using the command:

analyze –S arm26_Setup_InverseDynamics.xml

Modify the setup file by adding the tags for the analysis you created directly below thearm26_Setup_InverseDynamics.xml
</InverseDynamics> tag.

Save the new setup file as arm26_myAnalysis_ID.xml

Make sure your dll is either in the PATH or that you have copied it to the test directory. Then, run the tool again from the command line:

analyze –S arm26_myAnalysis_ID.xml –L myAnalysisPlugin

You should see the line "Loaded library myAnalysisPlugin" printed on stdout. You should also see a new file in the directoryarm26pos.sto Results
that contains your analysis results (the file consists of 6 columns per body, with the columns containing position and orientation relative to.sto
ground).

Now load the model that you used above in the GUI. Then, load the motion . Plot the quantityarm26.osim arm26_InverseKinematics.mot
r_ulna_radius_hand_Y (from the file) and the location of the marker r_radius_styloid_ty from the motion. The results shouldarm26pos.sto
look like that shown below:

27

With a main program: If you are writing a main program, you can use your analysis by including the header files and linking to the
export library (.lib on Windows).

 For Option B, where you wrote your Analysis as part of your main program, there is no plug-in to build separately. You just compile andOption B:
link the code for your Analysis along with the rest of the code of your main program. The analysis can be added to the model using the calls:

MyAnalysis* comReporter = new MyAnalysis (&osimModel);
osimModel.addAnalysis(comReporter);

Next: Creating Your Own Analysis Part Two

Home: | Creating Your Own Analysis Developer's Guide

28

Creating Your Own Analysis Part Two

Build a Body Position, Velocity, and Acceleration Analysis

The Analysis from the previous section outputs a body's position. We will now extend it to also output the body's velocity and accelerations.
Below, we will show you snippets of the existing code that outputs positions. You should search for that code snippet and use it as a model to add
the code necessary to output velocities and acceleration. Note that if you want to use the same set of column labels as are defined here for
positions, you need to output the same number of columns as that for positions (6 per body).

The following steps outline the procedure:

Declare additional output storage and internal working arrays. The number of outputs has changed. Before we had one storage file with
position data:

/** Storage for recording body positions. */
Storage _storePos;
and one internal working array:

/** Internal work array to hold the computed positions. */
Array<double> _bodypos;

Add additional storage for velocities and accelerations and provide the needed working arrays for velocities and accelerations in the .h file.

Update the description of the Analysis in constructDescription() in the .cpp file.
Setup the storage for the velocity and acceleration results, following the example for positions:

setupStorage()
{
 // Positions
 _storePos.reset(0);
 _storePos.setName("Positions");
 _storePos.setDescription(getDescription());
 _storePos.setColumnLabels(getColumnLabels());
 …
}

Correctly size the working arrays :

setModel(Model& aModel)
{ …
 int numBodies = aModel.getNumBodies();
 _kin.setSize(6*numBodies);
 …
}

An Analysis' record()method is the heart of the analysis. It collects and, if necessary, computes the data to output the results of an
analysis. In this case, the analysis requires adding a calculation (call to the SimbodyEngine) to get the model accelerations.

29

/*
* Compute and record the results.
*
* This method, for the purpose of example, records the position and
* orientation of each body in the model. You can customize it
* to perform your analysis.
*
* @param aState Current state of the system.
*/

record(const SimTK::State& aState)
{
 …
 // After setting the state of the model and applying forces
 // Compute the derivative of the multibody system (speeds and
 // accelerations)

 // POSITION
 const BodySet& bodySet = _model->getBodySet();
 int numBodies = bodySet.getSize();
 for(int i=0;i<numBodies;i++) {
 const Body& body = bodySet.get;
 SimTK::Vec3 com;
 body.getMassCenter(com);

 // GET POSITIONS AND EULER ANGLES
 _model->getSimbodyEngine ().getPosition(body,com,vec);
 _model->getSimbodyEngine ()
 .getDirectionCosines(body,dirCos);
 _model->getSimbodyEngine ()
 .convertDirectionCosinesToAngles(dirCos,
 &angVec[0],&angVec[1],&angVec[2]);

 // CONVERT TO DEGREES?
 if(getInDegrees()) {
 angVec *= SimTK_RADIAN_TO_DEGREE;
 }

 // FILL KINEMATICS ARRAY
 int I=6*i;
 memcpy(&_bodypos[I],&vec[0],3*sizeof(double));
 memcpy(&_bodypos[I+3],&angVec[0],3*sizeof(double));
}

_storePos.append(aT,_bodypos.getSize(),&_bodypos[0]);

// VELOCITY
…

Repeat this process for velocities and accelerations. Check the Doxygen documents for calls to the SimbodyEngine to get velocities and
accelerations.

In begin() reset the storage objects at the specified time.

// RESET STORAGE
 _storePos.reset(aT);

An analysis is finalized by printing the results out to file:

30

/*
* Print results.
*
* The file names are constructed as
* aDir + "/" + aBaseName + "_" + ComponentName + aExtension
*
* @param aDir Directory in which the results reside.
* @param aBaseName Base file name.
* @param aDT Desired time interval between adjacent storage vectors.
* Linear interpolation is used to print the data out at the
* desired interval.
* @param aExtension File extension.
*
* @return 0 on success, -1 on error.
*/

printResults(const string &aBaseName,const string &aDir,double aDT,const string &aExtension)
{
 // POSITIONS
 _storePos.scaleTime(_model->getTimeNormConstant());
 Storage::printResult(&_storePos,aBaseName+"_"+getName()+"_pos",aDir,aDT,aExtension);

 // VELOCITIES
 …

Compile and debug in Visual Studio.
Build install when satisfied (this will overwrite the previous if you do not change the name)osimplugin.dll
Repeat the process from the previous section to run and test.

Try plotting both the position and velocity of the COM y coordinate r_ulna_radius_hand_Y. You should see a plot like the one below:

31

Next: Adding New Functionality

Previous: Creating Your Own Analysis Part One

Home: | Creating Your Own Analysis Developer's Guide

32

Adding New Functionality
There are four new functionalities covered in this guide that you may want to include:

Creating a Controller
Creating an Optimization
Creating a Customized Actuator
Creating a Customized Muscle Model

Next: Creating a Controller

33

Creating a Controller

Overview

In this section, we will add to the tug-of-war example from Chapter 2 by creating a controller that will calculate excitations for the two muscles in
the model. The controller we will build computes excitations that naively try to track a desired trajectory of the block in the tug-of-war model.
Through this example, you will see how to implement a proportional-derivative (PD) like muscle controller to control a model using the OpenSim
API.

We will build the example up in pieces. First, we will write a function that returns the desired position of the model in the z-direction (the direction
of the line connecting the origins of both muscles in the ground) at a given time. Then, we will implement a PD controller that extends OpenSim's
base Controller class to calculate excitations for the muscles based on the desired position of the model and the model's current state. Finally, we
will connect the controller to the model to run a forward dynamics simulation that attempts to make the model follow the desired trajectory by
controlling the model's muscle excitations. We can observe the final trajectory of the model to assess how well this controller is able to reproduce
the model's desired motion. The resulting source code and associated files for this example come with the OpenSim 2.0 distribution under the
directory:

<OPENSIM_INSTALL_DIR>\sdk\APIExamples\ControllerExample

The following sections will describe the blocks of code needed to implement this example:

Creating a Controller Part One
Creating a Controller Part Two

Next: Creating a Controller Part One

Home: Adding New Functionality

34

Creating a Controller Part One

The steps covered in part one are:

Defining the desired trajectory of the model
Designing a controller to track a desired trajectory
Implementing the controller

Defining the desired trajectory of the model

The desired trajectory for the model is a sinusoid that starts out exactly halfway in-between the left and right walls (at the origin = 0), movesz
toward the right wall (to = +0.15 m) then toward the left wall (to = -0.15 m), and then moves back to the starting position. The whole motion willz z
last from = 0 seconds to = 2 seconds. The equation for the -coordinate of the model to follow this motion is () = 0.15 sin(2), where thet t z z t ft
frequency is = ½ Hz, which simplifies to () = 0.15 sin(). We will keep the desired values for all other coordinates of the model at zero.f z t t

To implement this desired trajectory, we will write a function in our file that calculates the value of () given a value of ,ControllerExample.cpp z t t
according to the equation above.

double desiredModelZPosition(double t) {
 // z(t) = 0.15 sin(pi * t)
 return 0.15 * sin(Pi * t);
}

The velocity of the model's -coordinate is just the time-derivative of its position: '() = 0.15 cos(). We will implement this as a function as well. z z t t

double desiredModelZVelocity(double t) {
 // z'(t) = (0.15*pi) cos(pi * t)
 return 0.15 * Pi * cos(Pi * t);
}

The velocities of all of the other coordinates in the model shall be set to zero (the derivative of their position values, which are also zero). A
function implementing the desired acceleration is written similarly (see the file).ControllerExample.cpp

Designing a controller to track a desired trajectory

We will design a controller that computes control values (excitations) for the model's two muscles in an effort to make the model follow the desired
trajectory we implemented above. The controller will be a : we will compute excitations based on deviationsproportional-derivative (PD) controller
of the model's current position from its desired position, as well as on deviations of the model's current velocity from its desired velocity.

We will pretend that each of the model's two muscles is an that instantaneously applies forces with magnitude = idealized linear actuator F xFopt
at both ends of the actuator (directed from each end to the middle of the actuator), given an input excitation value 0 > > 1. may be ax Fopt
different number for each actuator and is a constant indicating the maximum force an actuator can produce when given a control value = 1. Wex
set for each actuator equal to the maximum isometric force (specified in the model's file) for the corresponding muscle. Unlike idealizedFopt .osim

actuators, muscles have activation and contraction dynamics that transform an input control (excitation) value into a muscle force, and this force
production is not an instantaneous process. A model containing idealized actuators instead of muscles that is controlled by a PD controller can
instantaneously produce the necessary forces needed to make the model follow a desired trajectory. However, since our model consists of
muscle actuators (which cannot instantaneously produce a desired force from a given excitation value) instead of idealized actuators, we expect
that the controller we implement will not track the desired trajectory perfectly. But, we are curious to see just how close we can get with a simple
controller!

Continuing to pretend that our model contains idealized actuators instead of muscles, we will now implement a PD controller that computes
control values that would cause the actuators to produce the forces that would make the model follow the desired motion. At time , we know thet
current position () and velocity '() of the model, as well as the desired position (), velocity '(), and acceleration ''() of the model.z t z t zdes t zdes t zdes t

First, we compute the total desired acceleration:

ades() = [''() + ['() - '()] + [() - ()]],t zdes t kv zdes t z t kp zdes t z t

where and are constants called the position and velocity gains, respectively. In dynamics, and represent the "stiffness" (force responsekp kv kp kv
due to position change) and "damping" (force response due to velocity change) properties of a system. If is too high, the system will be kv

, so the system will lose energy too quickly and settle too quickly to some equilibrium state. If is too low, the controller will be overdamped kv
 and the system will oscillate about an equilibrium state without settling to it quickly. It is common practice to choose so that theunderdamped kv

system is , i.e., the system settles quickly to a state but without oscillating about the equilibrium state. Similarly, a PD controller iscritically damped
considered critically damped if = 2*sqrt() for a second-order linear system. Thus, we choose = 1600 and = 80 in our implementation ofkv kp kp kv
this PD controller.

35

Next, we compute the net desired force on the block in the model:

Fdes() = (),t m ades t

where is the mass of the block. Since muscles only pull and do not push, we will only excite (i.e., send a non-zero control value to) one musclem
at a time (we will set the control value of the other muscle to zero). If () < 0, then we want to pull the block to the left, so we will excite the leftFdes t

muscle at time . If () > 0, then we want to pull the block to the right, so we will excite the right muscle at time . In any case, the non-zerot Fdes t t

control value () that we send to a muscle at any time will be:x t t

x = | ()| / ,Fdes t Fopt

where is the maximum isometric force of the muscle being excited at time . This equation is the we will implement for our PDFopt t control law

controller below.

Implementing the controller

In this example, we will write a class called TugOfWarPDController that implements the PD controller we designed above. To implement our
controller with the desired control law, we derive our controller from Controller:

class TugOfWarPDController : public Controller {
 public:
 TugOfWarPDController(Model& aModel, double aKp, double aKv) :
 Controller(aModel), kp(aKp), kv(aKv) {

 // Read the mass of the block.
 blockMass = aModel.getBodySet().get("block").getMass();
 std::cout << std::endl << "blockMass = " << blockMass << std::endl;
}

The constructor above says that when the controller is created, it should have all the properties of its parent Controller (i.e., it knows what model it
will be controlling) and set its member variables kp, kv, and blockMass equal to the input values aKp, aKv, and aMass, respectively.

The behavior of the controller is determined by its computeControls function, which implements the intended control law. Two arguments are
passed into this function: the current state, s, of the system and a vector of controls, which are the model controls to be computed. In our model,
index 0 refers to the left muscle and index 1 refers to the right muscle. The computeControls function computes and adds in the values for
controls for each of its actuators based on the current state and desired position, velocity, and acceleration:

virtual computeControls(const SimTK::State& s, SimTK::Vector controls) const
{
 // Get the current time in the simulation.
 double t = s.getTime();

 // Get a pointer to the current muscle whose control is being
 // calculated.
 Muscle* act = dynamic_cast<Muscle*> (&_actuatorSet.get(index));

 // Compute the desired position of the block in the tug-of-war
 // model.
 double zdes = desiredModelZPosition(t);

 // Compute the desired velocity of the block in the tug-of-war
 // model.
 double zdesv = desiredModelZVelocity(t);

 // Compute the desired acceleration of the block in the tug-
 // of-war model.
 double zdesa = desiredModelZAcceleration(t);

 // Get the z translation coordinate in the model.
 const Coordinate& zCoord = _model->getCoordinateSet().get("blockToGround_zTranslation");

 // Get the current position of the block in the tug-of-war model.
 double z = zCoord.getValue(s);

36

 // Get the current velocity of the block in the tug-of-war model.
 double zv = zCoord.getSpeedValue(s);

 // Compute the correction to the desired acceleration arising
 // from the deviation of the block's current position from its
 // desired position (this deviation is the "position error").
 double pErrTerm = kp * (zdes - z);

 // Compute the correction to the desired acceleration arising
 // from the deviation of the block's current velocity from its
 // desired velocity (this deviation is the "velocity error").
 double vErrTerm = kv * (zdesv - zv);

 // Compute the total desired acceleration based on the initial
 // desired acceleration plus the correction terms we computed
 // above: the position error term and the velocity error term.
 double desAcc = zdesa + vErrTerm + pErrTerm;

 // Compute the desired force on the block as the mass of the
 // block times the total desired acceleration of the block.
 double desFrc = desAcc * blockMass;

 // Get the maximum isometric force of the current muscle.
 double Fopt = act->getMaxIsometricForce();

 // Now, compute the control value for the current muscle.
 double newControl;

 // If desired force is in direction of one muscle's pull
 // direction, then set that muscle's control based on desired
 // force. Otherwise, set the muscle's control to zero.
 double leftControl = 0.0, rightControl = 0.0;
 if(desFrc < 0) {
 leftControl = abs(desFrc) / FoptL;
 rightControl = 0.0;
 }

 else if(desFrc > 0) {
 leftControl = 0.0;
 rightControl = abs(desFrc) / FoptR;
 }

 // Don't allow any control value to be greater than one.
 if(leftControl > 1.0) leftControl = 1.0;
 if(rightControl > 1.0) rightControl = 1.0;

 // Thelen muscle has only one control
 Vector muscleControl(1, leftControl);

 // Add in the controls for this muscle to the set of all model controls
 leftMuscle->addInControls(muscleControl, controls);

 // Specify control for other actuator (muscle) controlled by this controller

37

 muscleControl[0] = rightControl;
 rightMuscle->addInControls(muscleControl, controls);
}

This function returns a control value based on deviation of the current state (position and velocity of the block) of the system from the desired
state (position and velocity of the block). This is an implementation of the control law we described earlier.

Finishing off the definition of the TugOfWarPDController class is the declaration of the member variables, kp, kv, and blockMass:

private:
 /** Position gain for this controller */
 double kp;

 /** Velocity gain for this controller */
 double kv;

 /**
 * Mass of the block in the tug-of-war model, used to compute the
 * desired force on the block at each time step in a simulation
 */
 double blockMass;
};

Next: Creating a Controller Part Two

Home: | | Creating a Controller Adding New Functionality Developer's Guide

38

Creating a Controller Part Two

The steps covered in part two are:

Writing the main()
Creating the controller and attaching it to the model
Initializing the system
Creating the integrator
Running the simulation

Writing the main()

To run a forward dynamics simulation using our controller, we can write a main program (as in Chapter 2). Our main program below initializes the
model, attaches a controller to the model, and runs a forward dynamics simulation.

int main()
{
 try {
 // Create an OpenSim model from the model file provided.
 Model osimModel("tugOfWar_model_ThelenOnly.osim");

Creating the controller and attaching it to the model

Next in our main program, we create an instance of the TugOfWarPDController, passing it the model we read in as well as values we choose for
the position and velocity gains:

// Create the controller.
 TugOfWarPDController *pdController = new
 TugOfWarPDController(osimModel, kp, kv);

 // Add the controller to the Model.
 osimModel.addController(pdController);

Initializing the system

Next, we set the initial states of the system, which include the position and speed values for all the coordinates in the model, as well as the
muscle activations and fiber lengths:

39

// Initialize the system and get the state representing the
 // system.
 SimTK::State& si = osimModel.initSystem();

 // Define non-zero (defaults are 0) states for the free joint.
 CoordinateSet& modelCoordinateSet = osimModel.updCoordinateSet();

 // Get the z translation coordinate.
 Coordinate& zCoord = modelCoordinateSet.get("blockToGround_zTranslation");

 // Set z translation speed value.
 zCoord.setSpeedValue(si, 0.15 * Pi);

 // Define the initial muscle states.
 const Set<Actuator>& actuatorSet = osimModel.getActuators();
 Muscle* muscle1 = dynamic_cast<Muscle*>(&actuatorSet.get(0));
 Muscle* muscle2 = dynamic_cast<Muscle*>(&actuatorSet.get(1));

 muscle1->setDefaultActivation(0.01); // muscle1 activation
 muscle1->setDefaultFiberLength(0.2); // muscle1 fiber length
 muscle2->setDefaultActivation(0.01); // muscle2 activation
 muscle2->setDefaultFiberLength(0.2); // muscle2 fiber length

 // Compute initial conditions for muscles.
 osimModel.equilibrateMuscles(si);

Creating the integrator

We create the integrator for the simulation in order to perform the numerical integration of the system equations of motion during the forward
dynamics simulation.

// Create the integrator and manager for the simulation.
 SimTK::RungeKuttaMersonIntegrator integrator(osimModel.getMultibodySystem());
 integrator.setAccuracy(1.0e-4);
 integrator.setAbsoluteTolerance(1.0e-4);
 Manager manager(osimModel, osimModel.getMultibodySystem(),integrator);

Running the simulation

We run the simulation by setting the initial and final times for the integrator and then instructing the manager to integrate starting from the initial
state of the system.

// Integrate from initial time to final time.
 manager.setInitialTime(initialTime);
 manager.setFinalTime(finalTime);
 std::cout << "\n\nIntegrating from " << initialTime << " to " << finalTime << std::endl;
 manager.integrate(si);

At this point, you can run the main program. We can then visualize the result of the forward dynamics simulation to see how well the controller
was able to make the model follow the desired trajectory. The figure below shows the desired trajectory (magenta) and the actual trajectory (dark
blue) taken by the model during the simulation. The vertical axis is the position of the block (-coordinate) and the horizontal axis is time (inz
seconds):

40

Next: Creating an Optimization

Previous: Creating a Controller Part One

Home: | | Creating a Controller Adding New Functionality Developer's Guide

41

Creating an Optimization

The steps to creating an optimization are:

Overview
Extending the classOptimizerSystem
Writing the main()
Defining controls and initializing muscle states
Define the optimizer
Writing the objective function

Overview

In this section, we will write a main program to perform an optimization study using OpenSim. We will build it up in pieces, starting by
programmatically loading an existing OpenSim model. The model will be a simple arm model named , consisting of 2 degrees ofArm26.osim
freedom and 6 muscles. We will then define an optimization problem that finds a set of muscle controls to of themaximize the forward velocity
forearm/hand segment mass center. The resulting source code and associated files for this example come with the OpenSim 2.0 distribution
under the directory:

C:\Program Files\OpenSim 2.0\sdk\APIExamples\OptimizationExample_Arm26

As in , the following sections explain the steps to create your own main program. Additionally, we will be extendingPerforming a Simulation
existing optimizer classes in the OpenSim API. For more information on the OptimizerSystem class, see the SimTKmath User's Guide available
on the SimTK project site (under the "Documents" tab).https://simtk.org/home/simtkcore

Extending the classOptimizerSystem

Before we get into extending the class, we need to include the proper header files and define a few global variables.

#include <OpenSim/OpenSim.h>
using namespace OpenSim;
using namespace SimTK;
int stepCount = 0;

// Global variables to define integration time window, optimizer step
// count, the best solution.
double initialTime = 0.0;
double finalTime = 0.25;
double bestSoFar = Infinity;

In OpenSim, optimization problems are set up within an OptimizerSystem, which uses the SimTK-level algorithms to determine a solution. To set
up our optimization problem, we need to create our own OptimizerSystem, called ExampleOptimizationSystem, by extending the existing base
OptimizerSystem class.

https://simtk.org/home/simtkcore

42

class ExampleOptimizationSystem : public OptimizerSystem {
 public:
 /* Constructor class. Parameters accessed in objectiveFunc() class */
 ExampleOptimizationSystem(int numParameters, State& s, Model& aModel):
 numControls(numParameters), OptimizerSystem(numParameters), si(s), osimModel(aModel){}

 /* The objectiveFunc() class will go here. */
 private:
 int numControls;
 State& si;
 Model& osimModel;
};

Writing the main()

We can perform an optimization by creating our own main program that will invoke our OptimizerSystem.

int main()
{
 try {
 // Create a new OpenSim model
 Model osimModel("Arm26_Optimize.osim");

 /* The guts of your main() will go here */
 }

 catch (std::exception ex)
 {
 std::cout << ex.what() << std::endl;
 return 1;
 }

 // End of main() routine.
 return 0;
}

Defining controls and initializing muscle states

As in Chapter 2, we need to define the controls (i.e., muscle excitations), initial activation, and fiber length of each muscle. Moreover, we initialize
the states for each muscle after setting the states.

43

// Define the initial and final controls
ControlLinear *control_TRIlong = new ControlLinear();
ControlLinear *control_TRIlat = new ControlLinear();
ControlLinear *control_TRImed = new ControlLinear();
ControlLinear *control_BIClong = new ControlLinear();
ControlLinear *control_BICshort = new ControlLinear();
ControlLinear *control_BRA = new ControlLinear();

/* NOTE: Each contoller must be set to the corresponding
* muscle name in the model file. */
control_TRIlong->setName("TRIlong"); control_TRIlat->setName("TRIlat");
control_TRImed->setName("TRImed"); control_BIClong->setName("BIClong");
control_BICshort->setName("BICshort"); control_BRA->setName("BRA");

ControlSet *muscleControls = new ControlSet();
muscleControls->append(control_TRIlong);
muscleControls->append(control_TRIlat);
muscleControls->append(control_TRImed);
muscleControls->append(control_BIClong);
muscleControls->append(control_BICshort);
muscleControls->append(control_BRA);

ControlSetController *muscleController = new ControlSetController();
muscleController->setControlSet(muscleControls);
muscleController->setName("MuscleController");

// Add the controller to the model
osimModel.addController(muscleController);

// Initialize the system and get the state
State& si = osimModel.initSystem();

// Define the initial muscle states
const OpenSim::Set<OpenSim::Actuator> &muscleSet =
osimModel.getActuators();

for(int i=0; i< muscleSet.getSize(); i++){
 Actuator* act = &muscleSet.get;
 OpenSim::Muscle* mus = dynamic_cast<Muscle*>(act);
 mus->setDefaultActivation(0.5);
 mus->setDefaultFiberLength(0.1);
}

// Make sure the muscles states are in equilibrium
osimModel.equilibrateMuscles(si);

Define the optimizer

In SimTK and OpenSim, an Optimizer operates on an OptimizationSystem, which we will initialize as an ExampleOptimizerSystem We then.
define the bounds for the parameters of the problem, the optimizer tolerance, and the numerical gradient flag before finally invoking the optimizer.

44

// Number of controls will equal the number of muscles in the model
int numControls = 6;

// Initialize the optimizer system we've defined.
ExampleOptimizationSystem sys(numControls, si, osimModel);
Real f = NaN;

/* Define and set bounds for the parameter we will optimize */
Vector lower_bounds(numControls);
Vector upper_bounds(numControls);

for(int i=0;i<numControls;i++) {
 lower_bounds[i] = 0.01;
 upper_bounds[i] = 1.0;
}

sys.setParameterLimits(lower_bounds, upper_bounds);

// Set the initial values (guesses) for the controls
Vector controls(numControls);
controls[0] = 0.01; controls[1] = 0.01;
controls[2] = 0.01; controls[3] = 0.01;
controls[4] = 0.01; controls[5] = 0.01;

try {
 // Create an optimizer. Pass in our OptimizerSystem
 // and the name of the optimization algorithm.
 Optimizer opt(sys, SimTK::LBFGSB);

 // Specify settings for the optimizer
 opt.setConvergenceTolerance(0.05);
 opt.useNumericalGradient(true);
 opt.useNumericalJacobian(true);

 // Optimize it!
 f = opt.optimize(controls);
}

catch(const std::exception& e) {
 std::cout << "Caught exception :" << std::endl;
 std::cout << e.what() << std::endl;
}

Writing the objective function

Within ExampleOptimizationSystem, we need to define our objective function as a public member of the class. This member function will take the
parameters of the muscle controls that we want to vary and will return a real number about the performance we want to optimize (i.e., forward
velocity of the hand) , which will then be minimized (). In this case, the parameters we want to varyNote: To maximize a value, just multiply it by -1
are the muscle control values, and we will return a real number determined by our objective function (i.e., the forearm/hand mass center velocity).
Additionally, if we had an analytical gradient or Jacobian function for our system, they could also be defined as member functions of the
ExampleOptimizationSystem.

45

int objectiveFunc(const Vector &newControls, const bool new_coefficients, Real& f) const {

 // Make a copy of out initial states
:State s = si;

// Access the controller set of the model and update the control values
((ControlSetController
*)(&osimModel.updControllerSet()[0]))>updControlSet()>setControlValues(initialTime,
&newControls[0]);
((ControlSetController
*)(&osimModel.updControllerSet()[0]))>updControlSet()>setControlValues(finalTime, &newControls[0]);

// Create the integrator for the simulation.
RungeKuttaMersonIntegrator integrator(osimModel.getMultibodySystem());
integrator.setAccuracy(1.0e-4);

// Create a manager to run the simulation
Manager manager(osimModel, osimModel.getMultibodySystem(), integrator);

// Integrate from initial time to final time
manager.setInitialTime(initialTime);
manager.setFinalTime(finalTime);
osimModel.getMultibodySystem().realize(s, Stage::Acceleration);
manager.integrate(s);

/* Calculate the scalar quantity for the optimizer to minimize
* In this case, we're maximizing forward velocity of the
* forearm/hand mass center so compute the velocity and
just multiply it by -1./
Vec3 massCenter;
Vec3 velocity;
osimModel.getBodySet().get("r_ulna_radius_hand").getMassCenter(massCenter);
osimModel.getMultibodySystem().realize(s, Stage::Velocity);
osimModel.getSimbodyEngine().getVelocity(s,osimModel.getBodySet().get("r_ulna_radius_hand"),
massCenter, velocity);
f = -velocity[0];
stepCount++;

/* Use an if statement to only store and print the results of an
* optimization step if it is better than a previous result.
*/
if(f < bestSoFar){
 Storage statesDegrees(manager.getStateStorage());
 osimModel.updSimbodyEngine().convertRadiansToDegrees(statesDegrees);
 statesDegrees.print("bestSoFar_states_degrees.sto");
 bestSoFar = f;
 std::cout << "\nOptimization Step #: " << stepCount << " controls = " << newControls << "
bestSoFar = " << f << std::endl;
}

return(0);
}

Now you can build and run your main program, and then load the model and results into OpenSim to visualize the optimized control pattern and
resulting kinematics.

46

Next: Creating a Customized Actuator

Home: | Adding New Functionality Developer's Guide

47

Creating a Customized Actuator

In this exercise, we will create a specific type of actuator that implements a spring with controllable stiffness. The source code and associated files
for this example come with the OpenSim 2.0 distribution under the directory:

C:\Program Files\OpenSim 2.0\sdk\APIExamples\CustomActuatorExample

When defining a new actuator, you can either start from scratch by deriving from the base class, CustomActuator, or if your actuator builds on an
existing class, you can derive from that class. In this example we will implement a controllable stiffness spring by deriving from the PistonActuator
class. The topics covered in this section include:

Actuator Overview
The PistonActuator class
The ControllableSpring class

Actuator Overview

We define an actuator as something that produces controllable loads between two bodies. These could be torques applied between two bodies
along a common axis, forces applied between two points defined on two different bodies, or some combination of loads applied according to some
geometry and state parameters. The key function of any actuator class is to calculate and apply loads to its associated bodies based on its control
value and the state variables at any time step.

The PistonActuator class

In this exercise we wish to create a spring with controllable stiffness that acts between two points located on different bodies. Instead of building
this actuator from the generic, pure virtual class, CustomActuator, we will instead derive our new class from the pre-existing PistonActuator class.
This class is a copy of the LineActuator Is now PointToPointActuatorclass defined within OpenSim. However, to serve as an example of how we
design our actuator classes we have implemented and included the renamed version, PistonActuator, within the source material of this example.
The figure below illustrates the PistonActuator class. This actuator applies a force between two points fixed on two bodies. These bodies do not
need to be consecutive bodies in a kinematic chain. This class calculates the magnitude of its force as the product (optimalForce x control value)
and uses the convention that a positive force magnitude acts to increase the distance between points P and P .A B

Illustration of the PistonActuator class

The ControllableSpring class

The figure below illustrates the ControllableSpring class that we will define. Just like PistonActuator, ControllableSpring will act between two
points fixed on two different bodies. However, the force magnitude will not simply be calculated as the product of the optimal force and the control
value. Instead, this product will represent the spring stiffness: . We will also have to define a rest length atk = (optimalForce x control value)
which the spring produces no force. The force magnitude will then be calculated as (restLength – currentLength).*F = k

48

Illustration of the ControllableSpring class to be implemented

Next: Creating an Actuator Part One

Home: | Adding New Functionality Developer's Guide

49

Creating an Actuator Part One

The steps covered in part one are:

Creating Your New Class
Setting up a working directory
Defining the ControllableSpring class (ControllableSpring.h)

Defining properties
The constructors
Setup methods
Get and Set methods
computeForce()
Finish the class definition and close the namespace

Creating Your New Class

Setting up a working directory

Before we examine the code, you will need to set up a working directory. This process is very similar to that described in Section 3.2.

Launch CMake. Set the directory as the source code location, and create any directory you wish for the build/CustomActuatorExample
location.

Click Configure. Be sure to point the OpenSim installation property to the correct location of your OpenSim 2.0 installation folder. By
default, the CMAKE_INSTALL_PREFIX (this flag shows up if you set CMake to show "Advanced View") is set to the same directory as
your source code. This will ensure that you will not have to move any associated files to visualize your results in the GUI later on.

Click Configure again and then click Generate. Then close CMake.

Defining the ControllableSpring class (ControllableSpring.h)

The following instructions will outline ALL the steps for defining the ControllableSpring class. The ControllableSpring class is defined by the file
. It only contains a partial definition of the class, though. You will need to fill in a few key lines that have been omitted.ControllableSpring.h

At the top of the header file, we include the header for the base class, call the OpenSim namespace, and begin defining the class as a derived
class of PistonActuator.

#include "PistonActuator.h"
namespace OpenSim {

class ControllableSpring : public PistonActuator
{

Defining properties

Our new actuator will have all of the properties of the PistonActuator class, plus one more for defining the rest length of the spring.

protected:
 /** rest length of the spring */
 PropertyDbl _propRestLength;

 // REFERENCES
 /** rest length */
 double &_restLength;

The constructors

Next we define the constructors. The constructors take the same form as the PistonActuator constructors for consistency. Both the constructor
and copy constructor call the setNull method (to be defined later) which initializes some of the basic elements of the class. The copy constructor
also copies the rest length from the existing ControllableSpring. The default destructor is used.

50

/* _restLength reference must be initialized in the initialization list */
ControllableSpring(std::string aBodyNameA="", std::string aBodyNameB="") :
 PistonActuator(aBodyNameA, aBodyNameB),_restLength(_propRestLength.getValueDbl())
{
 setNull();
}

/* The copy constructor must also copy the _restLength since the base class
** version doesn't know about it. */
ControllableSpring(const ControllableSpring &aControllableSpring) :
 PistonActuator(aControllableSpring),_restLength(_propRestLength.getValueDbl())
{
 setNull();
 _restLength = aControllableSpring.getRestLength();
}

/* use the default destructor */
virtual ~ControllableSpring() {};

Setup methods

We will define two private member methods that are used during construction to initialize the ControllableSpring instance. First, setupProperties()
is used to set up the properties of the ControllableSpring from values read in from an XML file. The only property added in this class is the rest
length.

/* define private utilities to be used by the constructors. */
private:
void setupProperties()
{
 _propRestLength.setName("rest_length");
 _propRestLength.setValue(1.0);
 _propRestLength.setComment("The equilibrium length of the spring.");
 _propertySet.append(&_propRestLength);
}

Next we define setNull(), which is called when a ControllableSpring object is constructed. It calls setupProperties() and sets some other basic
elements of the actuator class, such as its type ("ControllableSpring") and its number of states.

void setNull()
{
 setType("ControllableSpring");
 setupProperties();
 setNumStateVariables(0);
}

Get and Set methods

Since the rest length was defined as a private member variable, we must define some public methods to get and set its value.

public:
// REST LENGTH
void setRestLength(double aLength) { _restLength = aLength; };
double getRestLength() const { return _restLength; };

computeForce()

The computeForce() method is the heart of any actuator class. It is called by OpenSim to calculate and apply any loads associated with the
actuator. The computeForce() method is defined to be purely virtual in the CustomActuator base class, so any derived classes must define its
behavior. PistonActuator has already defined its own implementation of computeForce(), but we will redefine it here so that the ControllableSpring

51

actuator behaves like a spring instead of like an ideal actuator. This method begins by checking that the model and bodies are defined.

void computeForce(const SimTK::State& s) const
{
 // make sure the model and bodies are instantiated
 if (_model==NULL) return;

 const SimbodyEngine& engine = getModel().getSimbodyEngine();

 if(_bodyA ==NULL || _bodyB ==NULL)
 return;

Next, it determines the locations of the application points in both the body and ground frames by doing some transformations. _pointA and
_pointB, as well as the bool _pointsAreGlobal, are defined in the PistonActuator base class.

/* store _pointA and _pointB positions in the global frame. If not
 ** alread in the body frame, transform _pointA and _pointB into their
 ** respective body frames. */
 SimTK::Vec3 pointA_inGround, pointB_inGround;
 if (_pointsAreGlobal)
 {
 pointA_inGround = _pointA;
 pointB_inGround = _pointB;
 engine.transformPosition(s, engine.getGroundBody(), _pointA, *_bodyA, _pointA);
 engine.transformPosition(s, engine.getGroundBody(), _pointB, *_bodyB, _pointB);
 }

 else
 {
 engine.transformPosition(s, *_bodyA, _pointA, engine.getGroundBody(), pointA_inGround);
 engine.transformPosition(s, *_bodyB, _pointB, engine.getGroundBody(), pointB_inGround);
 }

Now we find the vector pointing from point B to point A expressed in the ground frame and then decompose it into its magnitude and direction.

// find the dirrection along which the actuator applies its force
 SimTK::Vec3 r = pointA_inGround - pointB_inGround;
 SimTK::UnitVec3 direction(r);
 double length = sqrt(~r*r);

To compute the magnitude of the force, we first must know the spring stiffness. Since we want stiffness to be the product of optimalForce and the
control value, we simply use the computeActuation() method from the base class, which outputs exactly this calculation.

double stiffness = computeActuation(s);

Now we find the magnitude of the force from the stiffness and the deflection of the spring. We then form the force vector.

// find the force magnitude and set it. then form the force vector
 double forceMagnitude = (_restLength - length)*stiffness;
 setForce(s, forceMagnitude);a
 SimTK::Vec3 force = forceMagnitude*direction;

The last operation computeForce() performs is to apply the equal and opposite point forces to the two bodies.

52

// appy equal and opposite forces to the bodies
 applyForceToPoint(*_bodyA, _pointA, force);
 applyForceToPoint(*_bodyB, _pointB, -force);
}

Finish the class definition and close the namespace

//==
}; // END of class ControllableSpring
} //Namespace
//==
//==

Next: Creating an Actuator Part Two

Home: | | Creating a Customized Actuator Adding New Functionality Developer's Guide

53

Creating an Actuator Part Two

The steps covered in part two are:

Using the ControllableSpring (toyLeg_example.cpp)
Ready toyLeg_example.cpp to use the ControllableSpring
Add a ControllableSpring to the model
Modify the control values given to the actuator
Point the controls to the spring
Point the control set to the new control values
Save the resulting motion as a different file
Build and run the example

Using the ControllableSpring (toyLeg_example.cpp)

We can now use the ControllableSpring class in an example to see its effects. The file we have provided implements a toytoyLeg_example.cpp
leg model that is driven by a PistonActuator (see toyLeg figure below).The model is built up in the sequence ground->linkage1->linkage2->block
with pin joints between all the segments. The block is constrained to move only in the vertical direction. A PistonActuator called "piston" acts
between the distal end of linkage1 and the center of the block. We will modify the main() routine to replace the piston actuator with a variable
stiffness spring.

toyLeg example

Ready toyLeg_example.cpp to use the ControllableSpring

Open the file, if you have not already done so. Add the ControllableSpring class to the included files as shown below.toyLeg_example.cpp

#include "PistonActuator.h"
#include "ControllableSpring.h"
#include <OpenSim/OpenSim.h>

using namespace OpenSim;
using namespace SimTK;

Within Visual Studios, locate the Actuators_examples project. Right click it and select "Build" in order to rebuild and force thetoyLeg_example.cpp
first build of . You will need to switch from "Debug" to either "Release" or "RelWithDebInfo" if you do not have debuggableControllableSpring.h
OpenSim libraries with which to link.

Add a ControllableSpring to the model

Find the line after the piston is added to the model. At this location, create a ControllableSpring. Set it up to have the identical geometry as the
piston, and add it to the model.

54

osimModel.addForce(piston);

//++
// Add ControllableSpring between the first linkage and the second block
//++
ControllableSpring *spring = new ControllableSpring;
spring->setName("spring");
spring->setBodyA(block);
spring->setBodyB(&ground);
spring->setPointA(pointOnBodies);
spring->setPointB(pointOnBodies);
spring->setOptimalForce(2000.0);
spring->setPointsAreGlobal(false);
spring->setRestLength(0.8);
osimModel.addForce(spring);

Modify the control values given to the actuator

Comment out the line defining the control values for the piston. Below it, add a series of control values that will be applied to the spring.

// Define the control values for the piston
// double controlT0[1] = {0.982}, controlTf[1] = {0.978};
// Define the control values for the spring
double controlT0[1] = {1.0}, controlT1[1] = {1.0},
controlT2[1] = {0.25}, controlT3[1] = {.25},
controlT4[1] = {5};

Point the controls to the spring

After the definition of control1, modify the setName call to apply control1 to the spring instead of the actuator.

ControlLinear *control1 = new ControlLinear();
control1->setName("spring"); //change this from 'piston' to 'spring'

Point the control set to the new control values

Comment out the section that sets the controlSet values to the piston controls and then point controlSet to the spring controls you just defined.

// set control values for the piston
/*controlSet->setControlValues(t0, controlT0);
controlSet->setControlValues(tf, controlTf);*/

// set control values for the spring
controlSet->setControlValues(t0, controlT0);
controlSet->setControlValues(4.0, controlT1);
controlSet->setControlValues(7.0, controlT2);
controlSet->setControlValues(10.0, controlT3);
controlSet->setControlValues(tf, controlT4);

Save the resulting motion as a different file

Change the Save Results section in order to print the resulting toyLeg kinematics under a new file name.

55

1.
2.
3.

4.

// Save results
Storage statesDegrees(manager.getStateStorage());
osimModel.updSimbodyEngine().convertRadiansToDegrees(statesDegrees);

//statesDegrees.print("PistonActuatedLeg_states_degrees.mot");
statesDegrees.print("SpringActuatedLeg_states_degrees.mot");

Build and run the example

Build the project again (see Section 4.3.3.1 above).Actuator_examples
Then build the project.INSTALL
Make sure that the directory appears at the front of your PATH. To check and/or set your PATH, go to Start<OpenSim2.0_intall_dir>/bin
-> System Properties (or System). Click on the Advanced tab and then select the Environment Variables button.
Navigate to the install directory and run the executable file, . After running the executable, use the GUI to open thetoyLeg_example
model and load the new motion file (). Upon visualizing the motion, you should seetoyLeg.osim SpringActuatedLeg_states_degrees.mot
the block oscillate at different magnitudes and frequencies as the spring stiffness is varied over time.

Next: Creating a Customized Muscle Model

Previous: Creating an Actuator Part One

Home: | | Creating a Customized Actuator Adding New Functionality Developer's Guide

56

Creating a Customized Muscle Model

In this section, we will create a muscle model that characterizes fatigue. We will then adapt the example from Chapter 2 to use this new type of
muscle model. The resulting source code and associated files for this example come with the OpenSim 2.0 distribution under the directory:

C:\Program Files\OpenSim 2.0\sdk\APIExamples\MuscleExample

When creating a new muscle model, you can start from scratch by deriving from the base class, Muscle, or you can derive alter an existing
muscle model. In this example, we will add the effects of muscle fiber fatigue to Thelen2003Muscle, but we could just as easily do this to
Schutte1993Muscle or Delp1990Muscle.

Custom Muscle Model Part One
Custom Muscle Model Part Two

Muscle modeling overview

A muscle is defined by a path and a set of force-generating parameters. The path of a muscle is stored in a GeometryPath object owned by the
base class, Muscle. The force-generating parameters are usually different for each type of muscle, so they are stored in the derived muscle
classes. A muscle also typically has one or more states (though it can have zero) whose differential equations describe the force, length, and
activation behavior of the muscle. Thelen2003Muscle has 2 states.

Next: Custom Muscle Model Part One

57

Custom Muscle Model Part One

The steps covered in part one are:

The header file (LiuThelen2003Muscle.h)
Defining properties
Defining states
Required functions

The source file (LiuThelen2003Muscle.cpp)
Enumerating the states
setNull()
setupProperties()
equilibrate() and computeEquilibrium()
computeActuation()
computeIsometricForce()

The header file (LiuThelen2003Muscle.h)

We start defining our new muscle model by creating a header file. The model will be based on Thelen2003Muscle, and will include fatigue effects
as defined in the following paper:
Liu, Jing Z., Brown, Robert, Yue, Guang H., "A Dynamical Model of Muscle Activation, Fatigue, and Recovery," , Vol. 82, IssueBiophysical Journal
5, pp. 2344-2359 (2002).

So we will call our model LiuThelen2003Muscle. At the top of , we include the header file for the base class and derive ourLiuThelen2003Muscle.h
new class.

#include <OpenSim/Actuators/Thelen2003Muscle.h>
namespace OpenSim {

class LiuThelen2003Muscle : public Thelen2003Muscle
{

Defining properties

Our new muscle model will have all of the properties of the Thelen2003Muscle model, plus two additional ones to define the rates at which active
muscle fibers fatigue and the rate at which fatigued fibers recover.

class LiuThelen2003Muscle : public Thelen2003Muscle
{
 protected:
 // the rate at which active muscle fibers become fatigued
 PropertyDbl _fatigueFactorProp;
 double &_fatigueFactor;

 // the rate at which fatigued fibers recover (become active)
 PropertyDbl _recoveryFactorProp;
 double &_recoveryFactor;

Defining states

Thelen2003Muscle has two states: activation and fiber length. We will add two more states: one for the number of active motor units (range 0.0 to
1.0), and one for the number of fatigued motor units (range 0.0 to 1.0).

In , we will set the indices for the new states. In the header file we just define the names.LiuThelen2003Muscle.cpp

protected:
 static const int STATE_ACTIVE_MOTOR_UNITS;
 static const int STATE_FATIGUED_MOTOR_UNITS;

Required functions

58

The muscle base class (Muscle) has a number of pure virtual functions. These functions must be defined in all classes that derive from Muscle.
To see the complete set of these functions, look for function declarations in that end in " = 0;". Thelen2003Muscle defines all of theseMuscle.h
functions, such as getFiberLength() and computeIsometricForce(). Because our new class derives from Thelen2003Muscle and not directly from
Muscle, we only have to define the base class functions whose behavior we want to change. We will also be adding additional functions to
compute the new states for fatigue. The base class functions that we will focus on in this example are:

public:
 virtual void computeEquilibrium(SimTK::State& s) const;
 virtual double computeActuation(const SimTK::State& s) const;
 virtual double computeIsometricForce(SimTK::State& s, double act) const;
 virtual void equilibrate(SimTK::State& state) const;

 private:
 void setNull();
 void setupProperties();

The source file (LiuThelen2003Muscle.cpp)

We will put the function definitions for our class into . This source file will include all of the required functions that weLiuThelen2003Muscle.cpp
need to override in Thelen2003Muscle, as well as new functions that describe the behavior of the fatigue states.

Enumerating the states

At the top of the source file, we define the indices of the muscle states that we are adding to the base class. Thelen2003Muscle defines 0 as the
activation state and 1 as the fiber length state. It is important to use 2 and 3 for the states we are adding because the indices for all of the

 Once we define the integer indices STATE_ACTIVE_MOTOR_UNITS andmuscle states must start at 0 and be contiguous.
STATE_FATIGUED_MOTOR_UNITS, those names will be used throughout the code to access the state variables, rather than the numbers 2 and
3.

// States 0 and 1 are defined in the base class, Thelen2003Muscle.
const int LiuThelen2003Muscle::STATE_ACTIVE_MOTOR_UNITS = 2;
const int LiuThelen2003Muscle::STATE_FATIGUED_MOTOR_UNITS = 3;

setNull()

The function setNull() is used to set some of the basic elements of the muscle class, such as its type (name) and its number of states. It is called
by OpenSim when an object of this class is constructed.

void LiuThelen2003Muscle::setNull()
{
 setType("LiuThelen2003Muscle");
 setNumStateVariables(4);
 _stateVariableSuffixes[STATE_ACTIVE_MOTOR_UNITS]="active_motor_units";
 _stateVariableSuffixes[STATE_FATIGUED_MOTOR_UNITS]="fatigued_motor_units";
}

setupProperties()

The function setupProperties() is used to define the properties of the muscle class and add them to the set of all OpenSim properties. This
enables you to define them in an OpenSim model file. This function is called by OpenSim when an object of this class is constructed. As we did in
the header file, we need to define a property for the rate at which active muscle fibers fatigue (which we will call) and one for thefatigue_factor
rate at which fatigued fibers recover (). These factors have a default value of 0.0, are assumed to be in the range 0.0 to 1.0, andrecovery_factor
are normalized (so they are usually the same for all muscles).

59

void LiuThelen2003Muscle::setupProperties()
{
 _fatigueFactorProp.setName("fatigue_factor");
 _fatigueFactorProp.setValue(0.0);
 _fatigueFactorProp.setComment("percentage of active motor units that fatigue in unit time");
 _propertySet.append(&_fatigueFactorProp, "Parameters");
 _recoveryFactorProp.setName("recovery_factor");
 _recoveryFactorProp.setValue(0.0);
 _recoveryFactorProp.setComment("percentage of fatigued motor units that recover in unit time");
 _propertySet.append(&_recoveryFactorProp, "Parameters");
}

equilibrate() and computeEquilibrium()

The function equilibrate() computes values of the muscle states assuming the muscle is in an equilibrium state. It should be called for each
muscle before you begin a dynamic simulation. In our muscle class, this function initializes the states to reasonable values, realizes the Simbody
model to the velocity stage, and then calls computeEquilibrium(). computeEquilibrium() gets the current activation of the muscle and calls
computeIsometricForce(), which is described in Section 4.4.3.6.

void LiuThelen2003Muscle::equilibrate(SimTK::State& state) const
{
 // Reasonable initial activation value
 setActivation(state, 0.01);
 setFiberLength(state, getOptimalFiberLength());
 setActiveMotorUnits(state, 0.0);
 setFatiguedMotorUnits(state, 0.0);
 _model->getMultibodySystem().realize(state, SimTK::Stage::Velocity);

 // Compute isometric force to get starting value of _fiberLength.
 computeEquilibrium(state);
}

 void LiuThelen2003Muscle::computeEquilibrium(SimTK::State& s) const
{
 double force = computeIsometricForce(s, getActivation(s));
}

computeActuation()

computeActuation() computes the values of the muscle states and their derivatives. It is called by the integrator or other code whenever the
musculoskeletal model's state has changed and the muscle must be updated accordingly. The code for this function in the LiuThelen2003Muscle
class is very similar to the code in Thelen2003Muscle::computeActuation(), but includes calculations of the fatigue states. This function performs
four basic steps:

Calculate normalized values of the muscle states from the State object passed in. The State object contains the current values and
derivatives of the model's coordinates, muscle states, and any other states in the musculoskeletal model. During a forward dynamics
simulation, the integrator operates on the state; it uses the current state, their derivatives, and the equations of motion to determine the
state at the next time step. So that the same differential equations can be used for every muscle of the same type, the equations are
normalized to certain muscle parameters. For example, tendon length is usually normalized by dividing it by the resting length of the
tendon for that muscle, thus producing tendon strain. Tendon force is usually normalized by dividing it by the maximum isometric force of
the muscle fibers. Once this is done, the same force vs. tendon strain equation can be used for all muscles.

Compute normalized derivatives of the muscle states, using the current values of the muscle states and the muscle state equations. For
the fatigue and recovery states in our LiuThelen2003Muscle, the equations look like this:

normStateDeriv[STATE_ACTIVE_MOTOR_UNITS] =
 normStateDeriv[STATE_ACTIVATION] –
 getFatigueFactor() * getActiveMotorUnits(s) +
 getRecoveryFactor() * getFatiguedMotorUnits(s);
 normStateDeriv[STATE_FATIGUED_MOTOR_UNITS] =
 getFatigueFactor() * getActiveMotorUnits(s) –
 getRecoveryFactor() * getFatiguedMotorUnits(s);

60

The first equation means that the rate of change in the percentage of active motor units is equal to the rate of change in the activation level minus
the fatigue factor times the number of active motor units, plus the recovery factor times the number of fatigued motor units. The second equation
means that the rate of change in the percentage of fatigued motor units is equal to the fatigue factor times the number of active motor units minus
the recovery factor times the number of fatigued motor units.

Un-normalize the state derivatives and store them in the State object, so they can be accessed by the integrator.

Store the muscle force and other state-dependent variables so they can be accessed by the integrator, muscle analysis, or other
components of the program.

computeIsometricForce()

To compute the isometric force in the muscle, we assume that the muscle has reached an equilibrium position in which the fiber velocity is zero,
and the fatigue and recovery rates are constant. According to the Liu fatigue model, in this equilibrium position the number of active motor units is
independent of the activation level (as long as the activation is greater than some threshold that depends on the fatigue and recovery rates).So
we can use the fatigue and recovery rates to calculate the steady-state activation level, and then pass that activation to the
computeIsometricForce function in the base class to compute the force in the muscle.

double LiuThelen2003Muscle::computeIsometricForce(SimTK::State& s, double aActivation) const
{
 if (_optimalFiberLength < ROUNDOFF_ERROR) {
 return 0.0;
}

// This muscle model includes two fatigue states, so this function
// assumes that t=infinity in order to compute the [steady-state]
// isometric force. When t=infinity, the number of active motor
// units is independent of the activation level (as long as activation
// > _recoveryFactor / (_fatigueFactor + _recoveryFactor)). So the
// passed-in activation is not used in this function (unless the fatigue
// and recovery factors are both zero which means there is no fatigue).
if ((_fatigueFactor + _recoveryFactor > 0.0) && (aActivation >=
 _recoveryFactor / (_fatigueFactor + _recoveryFactor))) {
 setActiveMotorUnits(s, _recoveryFactor / (_fatigueFactor + _recoveryFactor));
 setFatiguedMotorUnits(s, _fatigueFactor / (_fatigueFactor + _recoveryFactor));
}

else {
 setActiveMotorUnits(s, aActivation);
 setFatiguedMotorUnits(s, 0.0);
}

aActivation = getActiveMotorUnits(s);

// Now you can call the base class's function with the steady-state
// activation.
return Thelen2003Muscle::computeIsometricForce(s, aActivation);
}

Next: Custom Muscle Model Part Two

Home: | | Creating a Customized Muscle Model Adding New Functionality Developer's Guide

61

Custom Muscle Model Part Two

The steps covered in part two are:

Example program
Modified tug-of-war example
Using LiuThelen2003Muscle
Analyzing the fatigue effect

Example program

To illustrate the new muscle model, we will modify the tug-of-war example described in so that a LiuThelen2003MusclePerforming a Simulation
pulls against a Thelen2003Muscle. We will run two five-second forward dynamics simulations, one with the fatigue and recovery parameters set to
zero, and one with them set to abnormally high values, to exaggerate the fatigue effect. We will quantify the fatigue effect by plotting the lengths of
the two muscles during the simulations.

Modified tug-of-war example

The source file contains the main() function from the tug-of-war simulation, with a few modifications so we can use it with ourmainFatigue.cpp
new muscle model. The source file in the folder already contains all of the necessary modifications, but here is a description ofMuscleExample
how it was changed. First, we want to lock the rotational degrees of freedom in the ground->block joint so that the block does not twist as the
muscles pull on it (twisting interferes with the straight back-and-forth length changes).

// Free joint states
CoordinateSet &coordinates = osimModel.updCoordinateSet();
coordinates[0].setValue(si, 0, true);
coordinates[1].setValue(si, 0, true);
coordinates[2].setValue(si, 0, true);
coordinates[3].setValue(si, 0, true);
coordinates[4].setValue(si, 0, true);
coordinates[5].setValue(si, 0, true);
coordinates[0].setLocked(si, true);
coordinates[1].setLocked(si, true);
coordinates[2].setLocked(si, true);

Next, we want to increase the simulation time from 4.0 seconds to 5.0 to better see the fatigue effect.

// Define the initial and final simulation times
double initialTime = 0.0;
double finalTime = 5.0;

Lastly, we want to change the names of the output files.

// Save the simulation results
Storage statesDegrees(manager.getStateStorage());
osimModel.updSimbodyEngine().convertRadiansToDegrees(statesDegrees);
statesDegrees.print("tugOfWar_fatigue_states_degrees.mot");

// Save the OpenSim model to a file
osimModel.print("tugOfWar_fatigue_model.osim");

Using LiuThelen2003Muscle

The final change we need to make to the original example is to use a LiuThelen2003Muscle instead of a Schutte1993Muscle. We are also going
to set the maximum isometric force of the Liu muscle to a value twice that of the Thelen muscle, so that it initially pulls the block towards its side
before fatiguing and letting the Thelen muscle pull it back. After including the header file, , at the top of ,LiuThelen2003Muscle.h mainFatigue.cpp
we can modify the code that creates the muscles to look as shown below. Note that the fatigue and recovery factors are both 0.0. We will change
them to non-zero values before running the second simulation.

62

// Create two muscles
double maxIsometricForce1 = 4000.0, maxIsometricForce2 = 2000.0,
optimalFiberLength = 0.2, tendonSlackLength = 0.2;
double pennationAngle = 0.0, activation = 0.0001,
deactivation = 1.0, fatigueFactor = 0.0, recoveryFactor = 0.0;

// muscle 1 (model with fatigue)
LiuThelen2003Muscle muscle1("Liu", maxIsometricForce1, optimalFiberLength, tendonSlackLength,
pennationAngle,
 fatigueFactor, recoveryFactor);
muscle1.setActivationTimeConstant(activation);
muscle1.setDeactivationTimeConstant(deactivation);

// muscle 2 (model without fatigue)
Thelen2003Muscle muscle2("Thelen", maxIsometricForce2, optimalFiberLength, tendonSlackLength,
pennationAngle);
muscle2.setActivationTimeConstant(activation);
muscle2.setDeactivationTimeConstant(deactivation);

// Define the path of the muscles
muscle1.addNewPathPoint("Liu-point1", ground, SimTK::Vec3(0.0,0.05,-0.35));
muscle1.addNewPathPoint("Liu-point2", block, SimTK::Vec3(0.0,0.0,-0.05));
muscle2.addNewPathPoint("Thelen-point1", ground, SimTK::Vec3(0.0,0.05,0.35));
muscle2.addNewPathPoint("Thelen-point2", block, SimTK::Vec3(0.0,0.0,0.05));

We also want to change the activation controls for the muscles so that they both start inactivated and ramp up to full activation at the same rate.

// Define the initial and final controls
double initialControl[2] = {0.0, 0.0};
double finalControl[2] = {1.0, 1.0};

Analyzing the fatigue effect

After compiling and running the simulation, we can load the model into the OpenSim GUI and plot muscle lengths to analyze the fatigue effect.
The model that is used by the example program is saved to the file . This model contains a muscle andtugOfWar_fatigue_model.osim Thelen2003
a muscle. However, because is a new muscle model that OpenSim does not know about, we cannot load thatLiuThelen2003 LiuThelen2003
model into OpenSim without first creating a plug-in containing the class. Rather than create a plug-in for this example, weLiuThelen2003Muscle
will instead make a small modification to the model file so that it can be loaded into OpenSim. All we need to do is change the XML tag for the
muscle named "Liu" from to . This changes its type to a Thelen2003 muscle, meaning that it will notLiuThelen2003Muscle Thelen2003Muscle
include any fatigue effects. But this is OK for our example. The example program still uses the correct muscle types, but the OpenSim GUI will
load the modified model. The muscles in this modified model have the same paths as in the original model, so we can still plot muscle-tendon
lengths to analyze the fatigue effects. This modified model is provided for you, and is in the file . So we nowtugOfWar_fatigue_model_GUI.osim
want to load the model into OpenSim along with the motion file with the simulation results, tugOfWar_fatigue_model_GUI.osim

. Plotting muscle-tendon length for both muscles as a function of the motion should generate a plot like thetugOfWar_fatigue_states_degrees.mot
one below.

63

Both muscles start with zero activation at a length of 0.3 meters. Because the Liu muscle is twice as strong as the Thelen muscle, as they both
develop force the Liu muscle "wins" the tug-of-war and stretches the Thelen muscle.

We can now change the fatigue and recovery parameters and see what difference this makes in the tug-of-war. Normal values for the parameters
are fatigue = 0.02 and recovery = 0.008. But we will exaggerate the effect for this example and use 0.1 and 0.04, respectively.

// Create two muscles
double maxIsometricForce1 = 4000.0, maxIsometricForce2 = 2000.0, optimalFiberLength = 0.2,
tendonSlackLength = 0.2;
double pennationAngle = 0.0, activation = 0.0001, deactivation = 1.0, fatigueFactor = 0.1,
recoveryFactor = 0.04;

After compiling and running a second simulation, we can load the same (overwritten) motion file into the OpenSim GUI and plot the muscle
lengths as a function of the new motion, adding the curves to the first plot. The result looks like this:

64

The green and magenta curves show the Liu and Thelen muscle lengths, respectively, during the second simulation. In this case, the Liu muscle
is still stronger initially, and stretches the Thelen muscle. But it quickly starts to fatigue, and at about one second, has weakened enough so that
the Thelen muscle begins to lengthen it.

Next: SimTK Basics

Previous: Custom Muscle Model Part One

Home: | | Creating a Customized Muscle Model Adding New Functionality Developer's Guide

65

SimTK Basics
The topics covered in this section include:

Overview
Naming Conventions
For More Information about SimTK

Overview

The OpenSim API uses the Simbios "simulation toolkit" SimTK as its low-level, domain-independent computational layer. Some familiarity with
SimTK is required to use the OpenSim API because some of the SimTK objects are visible there. This chapter presents a brief introduction to the
parts of SimTK that are most commonly used with the OpenSim API; you can find more documentation for SimTK elsewhere (see

, Documents tab). The intent, however, is that there is enough material here so that you can use the OpenSimhttps://simtk.org/home/simtkcore
API for many purposes without having to look further.
SimTK provides a broad base of functionality. We will discuss the subset needed for the OpenSim API in six groups:

Numbers and Constants in SimTK
Vectors and Matrices
Basic Geometry and Mechanics
Available SimTk Numerical Methods
Multibody Dynamics Concepts (Simbody)
SimTK Simulation Concepts

Together, the numerical objects and numerical methods provide Matlab-like functionality accessible from C++. We will cover the low-level
numerical objects in detail, provide an introduction to the available numerical methods, and introduce basic concepts for Simbody and the SimTK
simulation architecture as employed by OpenSim.

Naming Conventions

All symbol names that come from SimTK are in the SimTK namespace, while symbols introduced by OpenSim are in the OpenSim namespace. In
most cases you will want to include the following line at the top of your source files so that you do not have to repeat the namespace for every
SimTK symbol:

using namespace SimTK;

Alternatively, you can introduce symbols selectively with statements like

using SimTK::Vec3;

Or you can prefix the symbols with SimTK:: when you use them. There are a few symbols, typically pre-processor macros, that cannot be put in a
C++ namespace; those symbols begin with the six-character string "SimTK_" instead.

SimTK uses mixedUpperAndLowerCase names with a capital letter used to begin a new word. Class names and constants begin with a
CapitalLetter. Method (function) names and variable names begin with a lowerCaseLetter. Pre-processor macros, except for the initial SimTK
prefix, are written in ALL_CAPS with underscores separating words.

For More Information about SimTK

This chapter provides a quick look at SimTK, but there is much more to learn if you are interested. A good place to start is
, Documents tab, where you will find several tutorials and theory manuals. More information and source code forhttps://simtk.org/home/simtkcore

the projects making up SimTK can be found on Simtk.org under projects: simbody, simmath, cpodes, simtkcommon, and lapack.

Next: Numbers and Constants in SimTK

https://simtk.org/home/simtkcore
https://simtk.org/home/simtkcore

66

Numbers and Constants in SimTK

SimTK supports both float (single) and double precision, and is compiled with one of those as its default, which is then referred to in SimTK as
type Real. SimTK::Real is simply a to either the built-in or type. OpenSim uses double precision, so for our purposestypedef float double always
the SimTK::Real type is always defined

typedef double Real;

Thus SimTK::Real and are interchangeable in the OpenSim API. We will use everywhere because it is more conventional anddouble double
requires fewer characters. However, if you look elsewhere at SimTK documentation, you will see type Real used instead; just interpret that as

 when you see it. Similarly, SimTK has a type SimTK::Complex which is interchangeable here with the C++ built-in type std::complex<double
>. You probably will not need to use complex numbers with OpenSim, but they are available if you need them. double

SimTK pre-defines a number of constants to machine precision; we recommend you use those rather than defining your own. The most useful
ones are: Pi, E (), Infinity, NaN (not-a-number), and I (= sqrt(-1)). Note that the first letter of constants are capitalized and in the SimTKe i
namespace.

Next: Vectors and Matrices

Home: | SimTK Basics Developer's Guide

67

Vectors and Matrices

The topics covered in this section include:

Overview
Operators
Construction and assignment
Getting the Size of a Vector or Matrix
Indexing
Output

Overview

SimTK has two different sets of classes for vector and matrix objects. You have seen types Vec3 (a 3-vector) and Vector (a variable-length
vector) in OpenSim examples. Here we will discuss those in more detail. If you want to know more about the design goals and implementation of
these classes, see the SimTK Simmatrix document here: , Documents tab.https://simtk.org/home/simtkcore

First, there are classes to represent small, fixed size vectors and matrices with zero runtime overhead: Vec for column vectors, and Mat for
matrices There is also a Row type that does not normally appear in user programs.. These classes are templatized based on size and element
type. Synonyms (s) are defined for common combinations; for example, Vec3 is a synonym for Vec<3, >, while Mat22 is a synonymtypedef double
for Mat<2,2, >. You can also create other combinations, such as Mat<2,10, > or Vec<4,std::complex< >>. However, the sizedouble double double
must always be determinable at compile time. The in-memory representation of these small objects is minimal: only the data elements are stored.

Second, there are classes to represent large vectors and matrices whose sizes are determined at runtime: Vector_ for column vectors and
Matrix_ for matrices Again with a normally-hidden RowVector_ type.. These classes are templatized based on element type. Types Vector and
Matrix are synonyms for Vector_< > and Matrix_< >. Again, you can use other element types. In fact, the element type can even bedouble double
one of the fixed-size vector or matrix objects. For example, Vector_<Vec3> is a vector, where each element is itself a three-component vector.
The type Vec<2,Vec3>, called a , is useful for combining rotational and translational quantities into a single object representing aspatial vector
spatial velocity or spatial force, for example. However, it is not permissible to use the variable-size Vector_ or Matrix_ objects as element types.
The in-memory representation of these objects includes, in addition to the data, an opaque descriptor containing the length and information on
how the data is laid out; the declared objects actually consist only of a pointer (essentially a void*) to the descriptors. This has many advantages
for implementation and binary compatibility, but makes it difficult to look through these objects in a debugger as you can with the small Vec and
Mat classes.

Here are some sample declarations:

Vec<3> v; // a 3-vector of RealsVec3
w; // same thing, using abbr.
Vector b,x; // vectors of doubles
Matrix M; // mxn matrix of doubles
Matrix_<Complex> C; // mxn matrix of complex<double>
Vector_<Vec3> v3; // big vector of 3-vecs

// This type is a 2-element vector whose elements// are 3-vectors. Memory layout and
computational// efficiency are identical to Vec<6>.
typedef Vec<2,Vec3> SpatialVec;

Operators

All of these classes support standard mathematical operators like +, -, *, / and C-style assignment operators like +=, -=, *=, /=. In addition, SimTK
overloads the ~ unary operator to indicate transpose (or more precisely, Hermitian conjugate). That is, for any vector or matrix x, SimTK's "~x" has
the same meaning as Matlab's "x'". For Vec3 there is also a cross product operator % available so that you can write compact expressions like

Vec3 w, r; // defined somewhere
Vec3 a = w % (w % r); // a=w x (w x r)

Like Matlab, SimTK requires strict shape conformance for vector and matrix arguments. So for Vec3 v and w, ~v*w is a dot product
(scalar=row*vector) while v*~w is an outer product (matrix=vector*row), while v*w fails to compile because the arguments are not conforming.
Scalar multiplication acts as expected. Global functions dot(), cross(), and outer() are available for those who prefer them to using the operators.

There also are versions of many standard math functions that operate on vectors and matrices: sin(), exp(), sqrt(), etc. and additional functions
abs(), min(), max(), sort(), mean(), median(). These allow many calculations to be written in a very concise way.

Construction and assignment

https://simtk.org/home/simtkcore

68

All vector and matrix types define a default constructor, that is, a constructor with no arguments. In Debug mode, the default constructor initializes
all elements to NaN. In Release mode, all elements are left uninitialized.

Constructors are also available for initializing data elements from individual element values, or by copying compatible objects. Initialization values
can be provided in the constructor or via a pointer (or C array) to values of the appropriate type. Assignment operators are available for copying
whole objects, and for setting single elements, subvectors and submatrices.

One convention followed by SimTK, which is different from that of most similar systems, is the treatment of scalar assignment. We follow this
convention: (1) when a scalar is assigned to a vector, every element of the vector is set to (this is the typical convention), and (2) when as s
scalar is assigned to a matrix, the elements of the matrix are set to while the off-diagonals are set to zero. Examples:s diagonal s

Vec3 v;
Mat22 m;
Vec3 v(0); // v=(0,0,0)
v=0; // "
v=3; // v=(3,3,3)
Mat33 m(0); // m=(0,0) zero
m=0 // (0,0)
Mat33 m(1); // m=(1,0) identity
m=1; // (0,1)
Vector b(10); // initial size 10 doubles
Matrix M(20,10); // initial size 20x10
b=0; // b=10 zeroes
M=1; // M=0, except M(i,i)=1, 0<=i<10

This convention is especially apt for matrices, because the matrix resulting from such a scalar assignment "acts like" that scalar. That is, if you
multiply by this matrix the result is identical to a scalar multiply by the original scalar. Two important special cases enabled by this convention are:
(1) setting a matrix to the scalar "1" results in the multiplicative identity matrix of that shape, and (2) setting a matrix to the scalar "0" results in the
additive identity matrix of that shape. In general, in any operation involving a scalar and a Matrix or Mat, the scalar is treated as if it were as
conforming matrix whose main diagonal consists of all 's with all other elements zero. So Matrix += will result in being added to 'ss m s s m
diagonal, which is what would happen if were replaced by diag() of the same dimension as . =1 thus subtracts an identity matrix from , s s m m m

 touching any of the off-diagonal elements. Note that for multiply and divide this convention yields the ordinary scalar multiply and dividewithout
operations: (1/)) divides every element of by .m (= *diag()) multiplies every element of by , while / (=s m s m s m s m s m s

Getting the Size of a Vector or Matrix

The example below shows how to get the size of a vector, matrix, or array:

TO DO: NEED TO DOUBLE CHECK SYNTAX AND INCLUDE EXAMPLE FOR MATRIX

Vector v;
int length;
length = v.size();

Indexing

SimTK provides 0-based indexing using the [] operator. If a Matrix is modifiable (non-const), then the indexed element can be modified and that
change affects the contents of the object. The [] operator applied to a Matrix returns a row, which may in turn be indexed to obtain an element in C
style. SimTK also permits indexing using round brackets () yielding identical results to [] for Vector but selecting a column rather than a row when
applied to a Matrix. A two-argument round bracket operator accesses a Matrix element.

Matrix m; Vector v; …
v[i] // ref to ith element of v, 0-based
v(i) // same
m[i][j] // ref to i,jth element of m, 0-based
m(i,j) // same, but faster
m[i] // ref to ith row of m, 0-based
m(j) // ref to jth column of m, 0-based

69

For the variable-size Matrix and Vector classes only, there are also operators for selecting sub-vectors and sub-matrices. Like the indexing
operators, these return references into the object, not copies. Sub-matrices are thus "lvalues" (in C terminology), meaning that they canoriginal
appear on the left hand side of an assignment.

Matrix m; Vector v; …
v(i,m) // ref to m-element subvector whose 0th element is v's ith element
 m(i,j,m,n) // ref to mxn submatrix whose (0,0) element is m's (i,j) element

Output

The C++ operator << is overloaded for all the matrix and vector types so you can look at a human-readable version of their contents via
statements like

Matrix m;
std::cout << "m=" << m;

Next: Basic Geometry and Mechanics

Previous: Numbers and Constants in SimTK

Home: | SimTK Basics Developer's Guide

70

Basic Geometry and Mechanics

In this section, we provide information on several basic SimTK classes, all based on the small Vec and Mat classes described above, that are
used in the OpenSim API to deal with geometrical and mechanical concepts:

Stations (points)
Directions (unit vectors)
Rotations
Transforms
Inertia

Stations (points)

Stations are simply points which are fixed in a particular reference frame or body (i.e., they are "stationary" in that frame). They are specified by
the position vector which would take the frame's origin to the station. A position is represented by a Vec3 type. SimTK does not provide an explicit
Station class; Vec3s are adequate whenever a station is to be specified.

Directions (unit vectors)

Directions are unit vectors, which are Vec3s with the additional property that their lengths are always 1. SimTK provides a class UnitVec3 which
behaves identically to Vec3 in most respects but restricts the ways in which values can be assigned to ensure that the length is always 1. This has
the practical advantage that you never need to normalize a UnitVec3; it is guaranteed already to have been normalized. A UnitVec3 can be used
in any context or operator that would normally take a Vec3 (that is, it has an implicit conversion to Vec3) except where the context would allow the
Vec3 to be modified in a way that would change its length. In particular, you can apply a Rotation to a UnitVec3 and get a UnitVec3 back because
that operation is known to preserve length.

Note that when you assign a Vec3 to a UnitVec3, normalization will be performed automatically, whereas assigning a UnitVec3 to a Vec3 or to
another UnitVec3 requires no computation. If you attempt to set a UnitVec3 to zero, you will get NaNs instead.

Rotations

There are many ways to express 3D rotations. Examples are: pitch-roll-yaw, azimuth-elevation-twist, axis-angle, and quaternions. Many others
are in common use, and SimTK provides extensive support for most of them. However, each way of writing orientation has its own quirks and
complexities, and all of them are equivalent to a 3x3 matrix, called a (synonyms: orientation matrix, direction cosine matrix).rotation matrix
Rotation matrices have a particularly simple definition and straightforward physical interpretation, and are very easy to work with. OpenSim uses
the SimTK rotation matrix as a least common denominator, embodied in a class Rotation. Rotation provides a set of methods which can be used
to construct a rotation matrix from a wide variety of commonly-used rotation schemes. These are represented internally in objects of type Rotation
as an ordinary SimTK Mat33, and can be used wherever a Mat33 is expected, except that construction, assignment, and writable element access
are restricted to ensure that certain properties are maintained. Columns of a SimTK Rotation have type UnitVec3 rather than Vec3.

There can be some confusion as to whether to use a rotation matrix or its inverse in a given context. We use a consistent notation to avoid that
confusion, and show here how the notation corresponds to the physical layout of the SimTK::Rotation object. The symbol R with left and right

superscripts represents the orientation of the "to" frame (the right superscript) measured with respect to the "from" frame (the left
superscript), like this:

(The notation vB indicates a (column) vector quantity v fixed to reference frame B, with measure numbers expressed in B's frame, while the

operator indicates that the measure numbers of some physical quantity are re-expressed in coordinate frame F.) So the symbol

 should be read "the axes of frame B expressed in frame G," or "the orientation of frame B in G," or just "B in G." We never use "R"
alone for a rotation matrix and neither should you; that is a recipe for certain disaster. Instead, always provide the two frames. Using this notation,
you can simply match up superscripts to rotate vectors or compose rotations. When under tight typographical restrictions, as in source code, we

write in "monogram" notation as R_GB. Also, since these are orthogonal, the inverse of a rotation matrix is just its transpose, which

serves simply to swap the superscripts. Use the SimTK "~" operator to indicate rotation inversion: . As an

71

example, if you have a rotation and a vector [v] expressed in B, you can re-express that same vector in G like this: B

 . To go the other direction, we can write

 . As a C++ code fragment, this can be written:

Rotation R_GB; //orientation of frame B in GVec3
v_G; //a vector expressed in G
…
Vec3 v_B = ~R_GB*v_G; //re-express v_G in frame B

Composition of rotations is similarly accomplished by lining up superscripts (subject to order reversal with the "~" operator). So given

 and we can get as . Note that the "~"

operator has a high precedence like unary "–" so is , not
 .
As is typical for SimTK operations on small quantities, the transpose operator is actually just a change in point of view and involves no

computation or copying of data. That is, the operations and are exactly equivalent in both meaning
and performance: the cost is just three inline dot products, with no wasted data copying or subroutine calls.

Transforms

Transforms combine a rotation and a position (translation) and are used to define the configuration of one frame with respect to another. We
represent a frame B's configuration with respect to another frame G by giving the measure numbers in G of each of B's axes, and the measure
numbers in G of the vector from G's origin point to B's origin point, for a total of 4 vectors, which can be interpreted as a 3x3 Rotation (see above)
followed by the origin point location (a Vec3). We call this object a (abbreviated) and augment the axes and origintransform xform conceptually
point to create a 4x4 linear operator which can be applied to augmented vectors (4 element is 0) or points (4 element is 1), or composed usingth th

matrix multiplication. We define a type Transform which conceptually represents transforms as follows:

(The notation , that is, the vector from the origin of the G frame to the origin of the B frame.) We use the symbol forX

transforms, with superscripts so means "the transform from frame to frame ," or "frame measured from andG B B
expressed in frame ." As for rotations, never write a transform as just without indicating frames. When under tight typographical restrictions, asG X

in source code, we write in "monogram" notation as X_GB.

Another way to interpret is that it represents the operations that must be performed on to bring it into alignment with (a rotationG B

and a translation). Then, as for rotation matrices described above, we can interpret as a composition of operators

72

yielding , and is defined to yield the inverse transform .
The above transform matrix can be considered a matrix of four columns as shown: three augmented vectors and an augmented point. An
alternate, and entirely equivalent, way to view this is as a rotation matrix, translation vector, and an extra row:

In our implementation, the physical layout of a Simbody Transform is just the three columns of the rotation matrix followed immediately in memory

by the translation vector, that is, . There is no need for the fourth row to be stored in
memory since it is always the same.
The multiplication operator * is overloaded to work with transforms on Vec3 objects with the assumption that these are points (stations) to be
shifted as well as rotated. That is, they are treated as though there were a fourth element set to 1. If you only want to apply a rotation, you can
extract the Rotation matrix from the Transform and then apply that. As an example:

Transform X_GB; //orientation and position of frame B in GVec3
v_G; //a vector expressed in G
Vec3 p_G; //location of point measured from G's origin, expressed in G
…
Vec3 p_B = ~X_GB*p_G; //point p, now measured from B's origin, exp. in B
Vec3 v_B = ~X_GB.R()*v_G; //re-express v_G in frame B, without shifting

Given a Transform, you can work with it as though it were a 4x4 matrix, or work directly with the rotation matrix and translation vector R p
individually, without having to make copies (methods .R() and .p() are available to provide references to the contained objects of a transform).x x x
Although a transform defined this way is not orthogonal, its inverse is easy to apply with no additional calculation. SimTK overloads the normal
matrix transpose operator "~" to recast a Transform to its inverse so that either the transform or its inverse can be used conveniently in an

expression, for example, .

Inertia

The SimTK Inertia class is a 3x3 symmetric matrix. The class provides some convenient constructors and methods for shifting to and from a
body's center of mass. The OpenSim API uses this class for specifying body inertia properties. If you want to see what else you can do with this
class, look it up in the Doxygen documents available at , Documents tab.https://simtk.org/home/simtkcore

Next: Available SimTk Numerical Methods

Previous: Vectors and Matrices

Home: | SimTK Basics Developer's Guide

https://simtk.org/home/simtkcore

73

Available SimTk Numerical Methods

Most of the SimTK numerical methods you will need are wrapped by the OpenSim API, so you will not need to access them directly through
SimTK. However, many such numerical methods are available if you need them. Some of the most commonly used are:

Linear algebra (various object-oriented factorization and eigenvalue classes, as well as direct access to Lapack and Blas if needed)
Optimization (constrained and unconstrained)
Numerical integration
Numerical differentiation
Random number generation
Polynomial root finding

For more information, see , Documents tab. SimTKlapack and Simmath documents are available from there, ashttps://simtk.org/home/simtkcore
well as the detailed Doxygen documents that describe individual classes and methods.

Next: Multibody Dynamics Concepts (Simbody)

Previous: Basic Geometry and Mechanics

Home: | SimTK Basics Developer's Guide

https://simtk.org/home/simtkcore

74

Multibody Dynamics Concepts (Simbody)

OpenSim's dynamics capability is based on the open-source Simbody package that is part of SimTK. Simbody is a full-featured, high-performance
multibody dynamics toolset using internal coordinates (that is, generalized coordinates relating one body to the next, rather than Cartesian
coordinates) and capable of modeling open- and closed-topology systems. Computation is performed using a recursive O() method so thatn
performance scales linearly with problem size.

Simbody provides some basic components (objects) that OpenSim uses to construct the multibody system that underlies an OpenSim dynamic
model. In most cases you will interact with these objects through the OpenSim API; however, you can get direct access to them for more
advanced functionality. The basic Simbody concepts are:

Body (mass properties and geometry)
Mobilizer (internal coordinate joint)
Constraint
Force

Forces are important, but they are typically domain-specific (like muscles) rather than being part of the multibody system itself so are discussed
elsewhere.
Simbody provides a wide set of built-in mobilizer (joint) and constraint types and allows arbitrary new ones to be constructed; OpenSim makes
extensive use of that capability. For a comprehensive discussion of custom mobilizers, see the preprint of the paper:

Ajay Seth, Michael Sherman, Peter Eastman, and Scott Delp, Minimal formulation of joint motion for biomechanics. Nonlinear Dynamics,
 (2009). Submitted

The most important Simbody base classes are:

MobilizedBody (combines a body and its inboard mobilizer)
Constraint

You can obtain direct access to the concrete objects derived from these types from the OpenSim API, and then make use of the Simbody API to
interact with them.

For more information, see , Documents tab. The SimTK Tutorial, Simbody Theory Manual, and detailed Doxygenhttps://simtk.org/home/simtkcore
documents available there describe the individual classes and methods.

Next: SimTK Simulation Concepts

Previous: Available SimTk Numerical Methods

Home: | SimTK Basics Developer's Guide

https://simtk.org/home/simtkcore

75

SimTK Simulation Concepts

The figure below shows the primary objects involved in computational simulation of a physical system in SimTK: , , and .System State Study
OpenSim creates and manages specific objects of these types that are suitable for the domain of neuromuscular biomechanics. In particular, the
OpenSim Model class implements a SimTK System, and the OpenSim Manager represents a Study. OpenSim uses a SimTK::State object
directly to represent the state of an OpenSim Model.

A is the computational embodiment of a mathematical model of the physical world. A System typically comprises several interacting,System
separately meaningful subsystems. A System contains models for physical objects and the forces that act on them and specifies a set of variables
whose values can affect the System's behavior. However, the System itself is an unchangeable, state-free ("const") object. Instead, the values of
its variables are stored in a separate object, called a (more details below). Finally, a couples a System and one or more States, andState Study
represents a computational experiment intended to reveal something about the System. By design, the results of Study can be expressed asany
a State value or set of State values which satisfies some pre-specified criteria, along with results which the System can calculate directly from
those State values. Such a set of State values is often called a .trajectory

It is important to note that our notion of "state" is somewhat more general than the common use of the term. By state, we mean everything
variable about a System. That includes not only the traditional continuous time, position and velocity variables, but also discrete variables,
memory of past events, modeling choices, and a wide variety of parameters that we call . The System's State has entries for theinstance variables
values of all of these variables.

In an internal coordinate representation, our position coordinates are generalized coordinates ; our velocity coordinates are generalized speeds q
. There are also auxiliary continuous state variables we denote ; these are used as state variables for force models, controllers, etc.u z

Structure of a System

A System is composed of a set of interlocking pieces, which we call . subsystems

76

In this jigsaw puzzle analogy, you can think of the System as providing the "edge pieces" which frame the subsystems into a complete whole.

In general, any subsystem of a System may have its own state variables, as can the System itself. The System ensures that its subsystems' state
needs are provided for within the overall System's State. The calculations performed by subsystems are interdependent in the sense of having
interlocking computational dependencies.

Note that by design this is a hierarchical structure. It is a flat partitioning of a System into a small number of Subsystems. In a higher-levelnot
modeling layer like OpenSim, you will find hierarchical models, which are a powerful way to represent the physical world. However, computational
resources are flat, not hierarchical, and the SimTK System/Subsystem scheme is a computational device, not a modeling system. The intent is
that a modeling layer (or user program) assembles a System from a small library of Subsystems just at the point when it is ready to perform
resource-intense computations.

Structure of a multibody system

Let's look at Simbody in this context. Simbody primarily provides computational subsystem (one puzzle piece) of a complete multibodyone
mechanics System. This piece, called the SimbodyMatterSubsystem, manages the representation of interconnected massive objects (that is,
bodies interconnected by joints). Simbody can use this representation to perform computations which permit a wide variety of useful studies to be
performed. For example, given a set of applied forces, Simbody can very efficiently solve a generalized form of Newton's 2 law F=ma. On thend

other hand, Simbody is agnostic about the forces F, which come from domain-specific models. That is, Simbody fully understands the concept of
, and knows exactly what to do with them, but hasn't any idea from where they might have come. OpenSim provides the remaining pieces,forces

such as muscle force subsystems.

A complete System thus consists of both the matter subsystem implemented by Simbody, and user-written or OpenSim-provided force
subsystems. So for a multibody system, the general SimTK System described above is specialized to look something like this:

77

Although both the SimbodyMatterSubsystem and the forces from subsystems require state variables, as discussed above, any SimTK System
(including an OpenSim Model) is a stateless object once constructed. Its subsystems collectively define the System's parameterization, but the
parameter values themselves are stored externally in a separate SimTK::State object.

For more information, see , Documents tab. The SimTK Advanced Programming Guide, Simbody Theoryhttps://simtk.org/home/simtkcore
Manual, and detailed Doxygen documents available there describe the individual classes and methods.

State realization

The state variables collectively represent a complete description of the state of a system at a given time. On the other hand, there are lots of other
numbers you might want to know. Some examples include:

The position of each body in Cartesian coordinates
The force acting on each body
The generalized acceleration of each internal coordinate

These are not independent pieces of information. Given the state variables, you can calculate them whenever you want. On the other hand, some
of them may be expensive to calculate, so you want to avoid recalculating them more often than necessary. The State object therefore provides
space for storing these derived values. This space is called the , and the process of calculating the values stored in it is knownrealization cache
as .realizing the state

If you look at the list of examples above, you will see that they need to be calculated in a particular order. The Cartesian coordinates of each body
generally need to be known before the forces can be calculated, and the forces need to be known before the internal coordinate accelerations can
be calculated. It also is clear that not all of these pieces of information will be needed in every situation. If you only care about the positions of
bodies, you don't want to waste time on an expensive force calculation.

The realization cache is therefore divided into a series of . Each piece of information in the cache belongs to a particular stage. When youstages
want to realize part of the cache, you specify what stage to realize it up to. This causes the information belonging to that stage and all previous
stages to be calculated. In other words, whenever you want to get some information from the cache, you must first make sure the state has been
realized up to the stage to which that information belongs. The figure below shows all the stages.

https://simtk.org/home/simtkcore

78

The "Topology" stage is not part of the State; it represents the fixed contents of the System. "Model" stage is used for setting modeling choices,
such as whether to use quaternions or Euler angles for joint orientation. "Instance" stage sets instance variables, such as masses, spring
constants, attachment points, etc. Those stages are fixed during a simulation. The remaining stages change dynamically:

Time: At this stage, time has advanced and state variables have their new values, but no derived information has yet been calculated. You can
query the State for time and any of the state variables, but nothing else.

Position: At this stage, the spatial positions of all bodies are known, along with related quantities such as separation distances.

Velocity: At this stage, the spatial velocities of all bodies are known, along with related quantities.

Dynamics: At this stage, the force acting on each body is known, along with the total kinetic and potential energy of the system.

Acceleration: At this stage, the time derivatives of all continuous state variables are known.

Report: A State is not normally realized to this stage during a simulation. It is available in case a System can calculate values that are not
required for time integration, but might be needed for data output. That way, these values will only be calculated when they are actually needed.

The State makes sure that all values in the realization cache are consistent with the current state variables. If you modify any state variable, it will
automatically "back itself up" to an earlier stage, invalidating cache entries from later stages so they can no longer be accessed. In particular:

Changing an instance variable, such as a mass or spring constant, brings the State back to Model stage.
Modifying time will bring the State back to Instance stage.t
Modifying a generalized coordinate will bring the State back to Time stage.q
Modifying a generalized speed will bring the State back to Position stage.u
Modifying an auxiliary variable will bring the State back to Velocity stage.z
When a System defines a discrete state variable, it specifies what stage the State should be reverted to when that variable is modified.
This should be chosen to ensure that modifying the variable will invalidate any cache entry that may depend on it.

Next: Developer's Wiki

Previous: Multibody Dynamics Concepts (Simbody)

Home: | SimTK Basics Developer's Guide

79

Authors

Authors

The following people have contributed to the information on this wiki by helping to develop the user and developer's guide, examples, and other
materials:

Frank Anderson
Scott Delp
Matt DeMers
Eran Guendelman
Ayman Habib
Samuel Hamner
Jennifer Hicks
Jill Higginson
Katherine Holzbaur
Chand John
Marjolein van der Krogt
Joy Ku
May Liu
Katie Lund
Peter Loan
Jeff Reinbolt
Ajay Seth
Michael Sherman

80

Acknowledgements

Acknowledgments

OpenSim was developed as a part of and funded by the National Center for Biomedical Computing through the National InstitutesSimTK Simbios
of Health and the NIH Roadmap for Medical Research, Grant U54 GM072970. Information on the National Centers can be found at

.http://nihroadmap.nih.gov/bioinformatics

The OpenSim project is also supported by the National Center for Simulation in Rehabilitation Research (NCSRR) is a National Center for
Medical Rehabilitation Research supported by research infrastructure grant R24 HD065690 from the National Institute of Child Health & Human
Development and the National Institute of Biomedical Imaging and Bioengineering. See our People page for a list of the many people who have
contributed to the OpenSim project over the years.

http://simbios.stanford.edu
http://nihroadmap.nih.gov/bioinformatics
http://ncmrr.org/
http://ncmrr.org/
http://www.stanford.edu/group/opensim/about/people.html

81

Trademarks and Copyright
SimTK and Simbios are trademarks of Stanford University.

The documentation for OpenSim is freely available and distributable under the . MIT License

Copyright (c) 2009-2012 Stanford University

Permission is hereby granted, free of charge, to any person obtaining a copy of this document (the "Document"), to deal in the Document without
restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Document,
and to permit persons to whom the Document is furnished to do so, subject to the following conditions:

This copyright and permission notice shall be included in all copies or substantial portions of the Document.

THE DOCUMENT IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE DOCUMENT OR THE
USE OR OTHER DEALINGS IN THE DOCUMENT.

http://www.opensource.org/licenses/mit-license.php

	OpenSim Developers Guide Cover
	OpenSim-040412-1433-36
	Developer's Guide
	Getting Started as a Developer
	Technical Background
	Prerequisites
	Step-by-Step Example

	Performing a Simulation
	Performing a Simulation Part One
	Performing a Simulation Part Two
	Performing a Simulation Part Three
	Performing a Simulation Part Four

	Creating Your Own Analysis
	Creating Your Own Analysis Part One
	Creating Your Own Analysis Part Two

	Adding New Functionality
	Creating a Controller
	Creating a Controller Part One
	Creating a Controller Part Two

	Creating an Optimization
	Creating a Customized Actuator
	Creating an Actuator Part One
	Creating an Actuator Part Two

	Creating a Customized Muscle Model
	Custom Muscle Model Part One
	Custom Muscle Model Part Two

	SimTK Basics
	Numbers and Constants in SimTK
	Vectors and Matrices
	Basic Geometry and Mechanics
	Available SimTk Numerical Methods
	Multibody Dynamics Concepts (Simbody)
	SimTK Simulation Concepts

	Authors
	Acknowledgements
	Trademarks and Copyright

